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Abstract 
Amphiphilic block copolymers (BCPs) and dendrimers are known to self-assemble in 

aqueous solution to form a number of aggregate morphologies. These different 

architectures are largely a function of the hydrophilic volume or weight fractions of the 

different components of the polymer system. One possible morphology is a vesicle, also 

referred to as a polymersome or dendrimersome when BCPs or dendrimers, respectively, 

are used. Vesicles are multi-functional, supramolecular, bilayer assemblies, whose 

potential for stimuli-responsiveness and surface functionalization make them promising 

materials for a variety of biomedical applications. This thesis demonstrates the use of 

UV-sensitive block copolymers forming photodegradable vesicles, as well as the use of 

dendrimersomes as a platform for surface functionalization. Polymersomes were formed 

from an amphiphilic triblock copolymer consisting of a UV-sensitive o-nitrobenzyl ester 

homopolymer functionalized with poly(ethylene glycol) chains at its termini. The 

assembled polymersomes degraded upon exposure to UV light and reassembled into 

smaller aggregate morphologies demonstrating their potential for encapsulation and 

targeted delivery of cargo. Surface functionalizable dendrimersomes were prepared using 

a combination of Janus dendrimers and their azide-terminated analogues. The 

dendrimersome surface was functionalized with a 2 kg/mol poly(ethylene oxide)-alkyne 

derivative showing that it may be functionalized with a variety of ligands using copper-

catalyzed azide-alkyne click chemistry. Combined, these examples demonstrate the 

versatility of stimuli-responsive and surface functionalized vesicle systems for a wide 

range of applications. 

 

Key words: Janus dendrimer, Dendrimersome, Surface functionalization, Polymersome, 

Photoresponsive, Self-assembly 
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Chapter 1 
1 Polymersomes and Dendrimersomes in Biomedical 
Applications 
 

1.1 Introduction to Polymers 
Polymer science dates back to ancient Mesoamerica.1 The indigenous peoples were able 

to mix the juice from morning glory vines with the latex from rubber trees to make 

rubber. This rubber was tunable by varying the amount of either component, thereby 

providing them the ability to make products with different physical properties, such as 

hard soles for sandals or figurines, sticky adhesives, stretchy rubber bands and bouncy 

balls. Now, more than 3000 years later, the field has evolved and greatly advanced into 

what it is today. The term polymer comes from the Greek, pols, meaning “many” and 

meros, meaning “part”, and was first used in 1833 by Swedish chemist, Jons Jakob 

Berzelius.2 The International Union of Pure and Applied Chemistry (IUPAC), defines the 

word as follows 

“a molecule of high relative molecular mass, the structure of which 

essentially comprises the multiple repetition of units derived, actually or 

conceptually, from molecules of low relative molecular mass.” 

 

With this in mind, we can subcategorize these molecules into natural and synthetic 

polymers. Natural polymers, as their name suggests, are made via cellular processes in 

nature and include the building blocks of life such as DNA, polysaccharides and proteins, 

or other products like silk from the silkworm, wool from sheep, and cellulose in plants. 

Synthetic polymers like Teflon, polyester, nylon 6.6, polystyrene, or dendrimers are those 

made in a lab or a factory by scientists for academic or commercial purposes. 

 

In comparison to small molecules, which have well defined molecular weights and 

physical properties, polymers have molecular weight distributions and broadly defined 

physical properties. These properties are governed by the chain entanglement 

characteristics intrinsic to the polymer as well as the dispersity (Đ) of the material. Đ 
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refers to the distribution of size or molecular weight of a given polymer sample, and is 

defined by the equation, 

Đ =
𝑀!

𝑀!
 

where Mw is the weighted molecular weight average, 

𝑀! =
Σ!𝑁!𝑀!

!

Σ!𝑁!𝑀!
 

and Mn is the molecular weight number average, 

𝑀! =
Σ!𝑁!𝑀!

Σ!𝑁!
 

where Ni is the number of molecules with specific molecular mass Mi. 

A perfectly monodisperse or uniform sample is represented by Đ=1.0 where Mw=Mn. 

This situation is termed “monodisperse” and describes a polymer sample consisting 

entirely of chains of equal length, such as with dendrimers or naturally occurring 

polymers like proteins. Conversely, when Đ>1.0, the polymer sample contains chains of 

varying length, such as is the case with most types of synthetic polymers where the width 

of the dispersity is dependent upon the polymerization technique; termed “polydisperse”. 

 

Polymer molecular weight is commonly determined through size exclusion 

chromatography (SEC), also known as gel permeation chromatography (GPC). This 

method fractionates samples based on hydrodynamic volume by using a stationary phase 

with a range of pore sizes. The polymers with larger hydrodynamic volume will elute 

first and the smaller ones will elute last. The size of the polymer is inversely proportional 

to the elution time because the smaller the polymer, the more pores it may enter and 

therefore increase its path length and time on the column. The elution times or volumes 

of the analyte fractions are compared to those of a series of polymer standards of known 

molecular weight which gives an accurate approximation of the molecular weight of the 

analyte. The more closely the analyte chemically resembles the polymer standard the 

more accurate the measurement will be. 
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Figure 1.1. GPC cartoon schematic showing separation of large and small analytes 

measuring change in refractive index versus elution time. 

 

Beyond molecular weight, polymers are typically characterized using their state transition 

temperatures to justify their physical properties. Small molecule species can exist in the 

solid, liquid or gaseous phases which are separated by phase-transition temperatures: 

melting point (mp) and boiling point (bp). Polymers, however, can exist in a glassy state, 

amorphous/semicrystalline state and melt or fluid-like state, which are separated by the 

glass-transition temperature (Tg) and melting temperature (Tm). Below the Tg the polymer 

chains are frozen in place and the polymer is hard and brittle. Above the Tg the chains 

exist in both a frozen and mobile state where the sample is soft and rubbery until above 

the Tm where the chains are completely mobile and fluid-like. The phase-transition 

temperatures are determined using differential scanning calorimetry (DSC) which is a 

thermoanalytical method by which the heat flux of a polymer sample is measured over 

heating and cooling cycles. The thermal flux of a reference and an analyte is measured as 

the two are heated and cooled at the same temperatures. When a phase transition occurs it 
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will require more or less heat to maintain the sample at the given temperature thus 

indicating at which temperatures (Tg and Tm) the phase transitions occur. 

Scheme 1.1. Phase transition temperatures of polymer species. 

 

 
1.2 Block Copolymers 
As the term polymer describes a molecule composed of repeating smaller units, a block 

copolymer (BCP) is two or more chemically distinct homopolymers linked together. Its 

physical properties are dependent upon such molecular characteristics as chemical 

structure, size, dispersity and block ratios. One polymer A can be linked to another 

polymer B, or polymer B can be grown from polymer A using B monomers. These are 

two methods for creating a diblock copolymer. There are however, other architectures 

that can be made, such as tri and tetraBCPs, or star and mixed-star BCPs. 

 
Figure 1.2. a) AB diblock copolymer, b) ABC triblock copolymer, c) AB star block 

copolymer, d) ABC mixed-star block copolymer 

 

1.2.1 Amphiphilic BCPs and Their Self-Assembly in Solution 
BCPs can have multiple distinct segments with similar solubility characteristics, being 

either polar or non-polar or in reference to water, hydrophilic or hydrophobic. When the 
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segments have differing solubilities in water, the molecule is called an amphiphilic block 

copolymer. This property yields the capacity for self-assembly. Aqueous self-assembly is 

the result of the poor affinity of the non-polar, or hydrophobic, block for the aqueous 

medium thus inducing the assembly of like blocks into an energetically favourable 

construct that will hide this part of the polymer. This results in variable, yet very tunable, 

aggregate morphologies. Self-assembly can occur in the bulk, thin-film or solution 

phases, each having its own applications.3 Over that last two decades however, solution 

phase self-assembly with BCPs has been an area of significant interest and discovery.  

Studies into morphological variations of assemblies, as shown in Figure 1.3, have 

revealed the formation of spherical micelles, worm-like micelles, vesicles, and other 

nanoparticles for drug delivery applications4, 5, 6 where the resulting morphology of the 

polymer assembly is largely due to the hydrophilic volume fraction of the polymer.7 

 
Figure 1.3. Aggregate morphology of block copolymer self-assembly based on ratio 

of hydrophilic to hydrophobic volume fractions. Observations were made by cryo-

TEM. The figure was reproduced with permission of John Wiley and Sons from 

Ahmed et al. (2006). 

 

Polymersomes have proven to be a very interesting system for biomedical applications 

especially drug delivery. Like liposomes, their architecture comprises an amphiphilic 

Vesicle Micellar 
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bilayer, but studies have shown that vesicles assembled from block copolymers have 

increased strength and stability while maintaining low permeability relative to 

phospholipid vesicles.8 Not only do they have desirable structural characteristics when 

assembled from block copolymers, but the use of poly(ethylene glycol) (PEG) as a 

hydrophilic block has been shown to increase circulation time in vivo as it reduces protein 

adsorption and macrophage binding to the assembly surface.9 The size of the assembly 

has also shown to play a role in circulation time. A particle diameter of approximately 

100 nm is the optimal size as the renal threshold for particles in the blood is ~10 nm and 

particles larger than ~200 nm are actively catabolized and removed through immune 

system processes.9 Lastly, what makes polymersomes an ideal drug delivery candidate is 

their ability to encapsulate both hydrophobic and hydrophilic drugs and release them in a 

controlled manner while at the same time prolonging their circulation time and protecting 

them from premature degradation.10 

 

1.2.2 Stimuli-Responsive Nanomaterials for Biomedical 
Applications 
In recent years, there has been significant interest in the development of stimuli-

responsive smart materials for a wide range of applications including drug delivery, 

medical imaging, sensors, and microfluidics. Smart materials are small molecules, or 

macromolecules that have molecular functionalities that in response to an external 

stimulus or stimuli will change one or more of its properties. Polymers and block 

copolymers responsive to stimuli including light,11 mechanical force,12 changes in pH,13 

redox potential,14 magnetic field,15 and CO2 concentration16 have been synthesized and 

studied. A number of photosensitive units have been studied and employed in various 

systems. Our group most often employs o-nitrobenzyl esters17, 18, 19, 20, 21, 22 in our UV-

responsive systems, however other groups have used pyrenylmethyl esters,23 p-

methoxyphenacyl esters,24 and coumarin derivatives25 as shown in Scheme 1.4.  
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Figure 1.4. Photolabile groups. a) o-nitrobenzyl ester, b) pyrenyl methyl ester, c) p-

methoxyphenacyl ester, d) coumarin. 

 

The o-nitrobenzyl ester group is an attractive system because it is modular and easily 

synthesized and for these reasons it has been widely used as a photodegradable unit in 

materials science.26 This photolabile group decays by way of a radical rearrangement 

which passes through a nitronic acid intermediate before cleavage into nitroso and 

carboxylic acid by-products (Scheme 1.5). 

Scheme 1.2. Photolabile o-nitrobenzyl ester radical mechanism.  

 
 

1.3 Dendrons and Dendrimers 
Different from linear polymers, and receiving an increasing amount of attention are 

polymers known as dendrons or dendrimers.10, 27, 28, 29 These are highly branched, 3-

dimensional architectures, grown generation-by-generation. They consist of three 

regions: the core or focal point, the repeating backbone branches (made up by the 

monomeric units) and the peripheral functional groups. Dendrimers differ from 
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hyperbranched polymers, which are synthesized from monomers in a single step, 

resulting in random branching and polydispersity. 

 
Figure 1.5. a) hyperbranched polymer, b) dendrimer, c) dendron. 

 

Because dendrons and dendrimers are synthesized step-wise, they have very low 

dispersities and thus well-defined molecular weights. However the synthesis of “perfect” 

dendrimers is very challenging especially at higher generations. A well-known and 

successful method of polyester dendrimer growth uses the 2,2-bis(hydroxymethyl) 

propionic acid (bis-MPA) monomer in either its acid or anhydride forms.30 The former 

requires the use of a coupling agent, either N,N’-dicyclohexylcarbodiimide (DCC) or  N-

(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC), during reaction with a free 

dendritic alcohol while the latter requires no coupling agent except in the synthesis of the 

anhydride itself. This method of growth is effective in that its only limitation is that 

growth beyond the fourth generation becomes increasingly difficult. Complete reactivity 

beyond this generation is very challenging. Growth of these molecules can occur 

divergently, adding monomeric units generationally to a molecular focal point or they can 

also be grown convergently, combining preformed dendrons to a reactive monomer. 
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Figure 1.6. a) Divergent growth of generation three dendron, b) convergent growth 

of generation three dendron, where green represents a protected functional group 

and blue represents an activated group. 

 

1.3.1 Amphiphilic Janus Dendrimers and Their Self-
Assembly 
Two dendrons can be linked by a common focal point. When these two dendrons are 

chemically distinct, the resulting molecule is termed a Janus dendrimer, so named after 

the two-faced Roman god of new beginnings, Janus. Often the two distinct segments are 

divergently synthesized and then convergently coupled. Moreover, when Janus-

dendrimers are made with two segments of opposite solvophilicity (affinity for a 

particular solvent), they can be amphiphilic and therefore have the capacity for self-

assembly into various aggregate morphologies, much like block copolymers as shown in 

Figure 1.7. 
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Figure 1.7. Self-assembly of vesicles with amphiphilic Janus dendrimers. 

 

It has been shown, through the preparation and study of a library of amphiphilic Janus 

dendrimers, that a vast array of morphologies can be formed in water. Percec et al. have 

observed the assembly of vesicles (dendrimersomes), cubosomes, disks, tubular vesicles 

and helical ribbons.31 The same group has also shown the assembly of so-called “onion-

like dendrimersomes” using a nano-precipitation procedure, thereby mimicking multi-

bilayer biological systems. The size and number of bilayers is tunable based on the 

concentration of the Janus dendrimer species.32  

 

Dendrimer assemblies, like polymer ones, have been shown to be able to encapsulate 

both hydrophobic and hydrophilic cargo molecules and then release them in response to a 

stimulus.33 Furthermore, based on their monodisperse nature, high loading capacities, 

large-scale production and bioconjugation capabilities, dendritic structures have been 

recognized to be ideal building blocks for biomedical applications.34 Nazemi and Gillies 

showed the synthesis of photoresponsive dendrons with an o-nitrobenzyl ester-bis-MPA 

monomer derivative backbone. Synthesis and complete photodegradation of the G1, G2 

and G3 dendrons was shown.35 Using a similar system, they were able to synthesize a 

Janus dendrimer using the photodegradable dendrons and a tris-tri(ethylene glycol) 

functionalized gallic acid. The G3 Janus dendrimer self-assembled into dendrimersomes, 

using a number of nano-precipitation protocols, and these assemblies were shown to be 

able to encapsulate and release both hydrophilic and hydrophobic payloads when 

stimulated by a UV-trigger.33 
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Figure 1.8. Dendrimersomes made from photodegradable Janus dendrimers 

showing encapsulation and UV-triggered release of cargo molecules. 

 

1.3.2 Surface Functionalization and Dendrimersomes 
Dendrimersomes combine the stability and mechanical strength seen in polymersomes 

with the biological function of stabilized phospholipid vesicles (liposomes), as well as 

unparalleled uniformity of size, formulation and chemical functionality.31 These 

characteristics are a function of the composition of the dendrimer backbone. However the 

functional groups at the periphery are also critical as they appear at the surface of the 

assembly and are the first contact with biological targets. Having reactive groups on the 

surface of the assemblies allows for functionalization and therefore the capacity to impart 

biological function. Functionalizing the periphery of dendrimers has been a widely 

studied method for conveying biological functions such as receptor targeting, imaging 

and drug delivery.36, 37, 38 Unlike with polymersomes, very little research has been done to 

study the functionalization of the surface of dendrimersomes and other dendrimer 

assemblies. Studies have shown the synthesis of glycodendrimers and assembly into 

structures referred to as “glycodendrimersomes”, “glycomicelles” and 

“glycocubosomes”. These were formulated from Janus dendrimers whose peripheries 

were functionalized with carbohydrates before the self-assembly process. Prior work in 

the Gillies group has demonstrated that dendron functionalized polymer assemblies could 

orient reactive groups on the assembly surface for post-assembly functionalization 

(Figure 1.10). This allowed for a wide array of ligands to be introduced to the 

dendrimersome surface.10, 39, 40, 41, 42, 43 
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Figure 1.9. Self-assembly and surface functionalization of dendrimersomes. 

 

1.4 Click Chemistry 
Click chemistry offers an arsenal of powerful, selective and modular reactions that work 

reliably in both small- and large-scale applications.44 This type of chemistry has 

developed into highly efficient methods for not only synthesis but also polymerization 

and conjugation. There are six conditions these reactions must realize. They must: 1) be 

modular, 2) be wide in scope, 3) be very high yielding, 4) generate only inoffensive by-

products removable by non-chromatographic methods 5) be stereospecific, and 6) give a 

product stable under physiological conditions. In terms of the process, these reactions 

must: 1) include simple reaction conditions (be insensitive to water and oxygen), 2) have 

readily available starting materials and reagents, and 3) use no solvent, a benign solvent 

or an easily removed solvent 

 

The most common types of transformations that satisfy these postulates include: 1,3-

dipolar cycloadditions, Diels-Alder transformations, ring opening reactions of strained 

heterocyclic electrophiles, carbonyl chemistry of the “non-aldol” type and additions to 

carbon-carbon multiple bonds.44 More specifically, these reactions include the catalyzed 

and non-catalyzed azide-alkyne coupling,45 Diels-Alder,46 thiol-ene,47, 48 -yne,48, 49 -
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isocyanate50 and –halo51 reactions. This thesis will focus on the copper-catalyzed azide-

alkyne 1,3-dipolar cycloaddition (CuAAC). 

 

1.4.1 Copper-Catalyzed Azide-Alkyne Cycloaddition 
(CuAAC) 
Over the last decade, the copper(I)-mediated click reaction between azide and alkyne 

functional groups to form a triazole ring has not only become popular for small molecule 

synthesis and material functionalization, but has gained much interest for the synthesis of 

polymers via click polymerization of azide and alkyne monomers. It is highly regarded 

because of its mild reaction conditions and benign by-products, regioselectivity, high 

reaction rate, functional group tolerance, and atom economy. In comparison with other 

polymerization and polymer conjugation techniques, it is one of the most effective in 

terms of the synthesis of functional polytriazoles with high molecular weight.52, 53  

Scheme 1.3. Copper(I) catalyzed azide-alkyne click reaction, (Ln= ligand). 

 
 

Huisgen was the first to propose the non-catalyzed cycloaddition of azides and alkynes to 

form triazoles, but it required high temperatures and usually gave variable yields.52, 53 The 

reaction proceeded by way of a 1,3-dipolar cycloaddition. Sharpless54 and Meldal55 

however, independently came to the conclusion that addition of copper(I) affords the 

same triazole product even at room temperature and in consistently high yields. The 

original mechanism had been disputed for many years, however in 2013 Worrell et al. 

disproved the original mechanism showing the step-wise nature of the carbon-nitrogen 

bond-forming events and the equivalence of the two copper atoms within the 

cycloaddition steps.56 
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Scheme 1.4. Proposed mechanism of the Cu(I)-catalyzed azide-alkyne click 

reaction.56 

 
 

1.5 Thesis Objectives 
The main goals of this thesis are to present: the synthesis of novel photoresponsive block 

copolymers and novel amphiphilic Janus dendrimers, the self-assembly of these 

polymeric systems into polymersome and dendrimersome structures, respectively, the 

degradation of the stimuli-responsive polymersomes, and the surface functionalization of 

the dendrimersomes. This thesis will also describe the relevance of these systems as 

platforms for biomedical applications, specifically drug delivery. 

 

Chapter 2 describes the first case, to date, of polymersomes assembled from a triblock 

copolymer with a completely photodegradable hydrophobic block copolymer. This 

chapter presents this system as a potential stimuli-responsive nanomaterial for drug 

delivery. The CuAAC click polymerization of the homopolymer with photosensitive o-

nitrobenzyl ester moieties along its entire length and coupling of the hydrophilic blocks 
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to form the triblock copolymer is described. The degradation of the copolymer is shown 

along with the self-assembly and degradation of polymersomes. 

 

Chapter 3 presents the synthesis of various novel amphiphilic Janus dendrimers and their 

self-assembly. This chapter highlights this type of system as a nanomaterial with 

potential for targeted drug delivery applications. It shows the formation of various 

dendrimer assemblies including solid aggregates and dendrimersomes. The synthesis and 

self-assembly of an azide-terminated analogue to one of the dendrimers is presented and 

the surface functionalization of the resulting assemblies with 2 kg/mol poly(ethylene 

oxide) (PEO)-alkyne is shown. 

 

Chapter 4 will summarize the pertinent conclusions drawn from the results and will 

discuss the future goals and direction of the continuing projects. 
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Chapter 2 
2 Photodegradable Polymer Vesicles 
 

2.1 Introduction 
In recent years, there has been significant interest in the development of stimuli-

responsive materials for a wide range of applications including drug delivery, medical 

imaging, sensors, and microfluidics. Polymers and block copolymers responsive to 

stimuli including light,1 mechanical force,2 and changes in pH,3 redox potential,4 

magnetic field,5 and CO2 concentration6 have been synthesized and studied. Among these 

stimuli, light is particularly attractive because it can be applied with high spatial and 

temporal resolution and benefits from reasonable control over its wavelength and 

intensity.7 While the use of UV light for biomedical applications is limited by the 

absorption of tissues and DNA damage, recent work has demonstrated that it is possible 

to use upconverting nanoparticles in conjugation with UV-visible chromophores to obtain 

photoinduced changes with near-infrared light.8  

 

In photoresponsive materials, changes such as cross-linking,9, 10 cis-trans isomerization11, 

12 and bond cleavage,13, 14, 15 have all been successfully induced by light. In the context of 

photocleavable materials, various functional groups have been employed, including o-

nitrobenzyl esters,8, 16, 17, 18, 19, 20 pyrenylmethyl esters,21 p-methoxyphenacyl esters,22 and 

coumarin derivatives.23 Due to its ease of synthesis and derivatization, the o-nitrobenzyl 

ester group has been widely used as a photodegradable unit in materials science.24  

 

Photoinduced changes are of particular interest in the context of amphiphilic block 

copolymers that assemble in aqueous solution to form spherical micelles, worm-like 

micelles, vesicles, and other nanoparticles for drug delivery applications.25, 26, 27 Such 

assemblies can enhance the properties of drug molecules by increasing their aqueous 

solubility, increasing their circulation time in vivo, and improving their targeting to the 

disease site. The integration of a photoresponsive moiety into these materials offers a 
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possibility to trigger the release of their cargo at a specific time and location in vivo. In 

photodegradable polymer assemblies, a common approach has involved the placement of 

the o-nitrobenzyl ester group at the junction of copolymer blocks,13, 18, 28, 29, 30, 31, 32, 33, 34, 

35, 36 with their subsequent self-assembly into various morphologies including micelles 

and vesicles.13, 28, 29, 31, 33, 35 Upon irradiation with light, these nanostructures decompose 

into their individual hydrophobic and hydrophilic polymer blocks. In most cases, this has 

resulted in either rearrangement of the initial morphologies to a secondary structure or the 

precipitation of the hydrophobic segments in aqueous media.13, 31 A potential drawback of 

this approach is that encapsulated hydrophobic molecules may remain in the aggregated 

hydrophobic core. To address this limitation, an alternative approach is to place 

photodegradable units along the entire length of the hydrophobic block such that when 

irradiated, complete decomposition of the hydrophobic block occurs. This strategy has 

been used to prepare micelles that degrade in response to light.14, 15, 37 Apart from a recent 

example employing self-immolative polymers with a photolabile end-cap,38 which 

assemble into polymer vesicles, this approach has not been extended to other types of 

polymer assemblies to the best of our knowledge. We describe here the synthesis of two 

amphiphilic triblock copolymers composed of 750 g/mol or 2 kg/mol poly(ethylene 

glycol) (PEG) and a high molecular weight photodegradable hydrophobic block 

containing o-nitrobenzyl esters. The self-assembly of these triblock copolymers using 

nano-precipitation is investigated, and it is demonstrated that under optimized conditions, 

vesicles can be obtained. The photodegradation of these vesicles is studied by 

spectroscopy, light scattering, and electron microscopy (Figure 2.1). 

 
Figure 2.1. Self-assembly of vesicles using a triblock copolymer with 

photodegradable units along the entire hydrophobic block. 
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2.2 Results and Discussion 
2.2.1 Synthesis 
Copper-catalyzed azide-alkyne cycloaddition chemistry (CuAAC) was selected for the 

synthesis of the photodegradable hydrophobic block as it is an efficient step-growth 

polymerization method that allows for the incorporation of the photodegradable o-

nitrobenzyl esters within the polymer backbone.15, 39, 40 An approach involving the 

polymerization of A2 and B2 monomers was employed because a small excess of one 

monomer could be used to prevent polymer cyclization and to allow for the subsequent 

coupling of the hydrophilic PEG blocks to both polymer termini. As shown in Scheme 

2.1, the nitro-functionalized diol 2.1 was reacted with azidoacetic acid 2.2, in the 

presence of EDC·HCl, DMAP and pyridine to provide the target diazide monomer 2.3. 

Reaction of 2.1 with pentynoic acid 2.4 under the same conditions provided the dialkyne 

monomer 2.5. 

Scheme 2.1. Synthesis of monomers 2.3 and 2.5. 

 
 

As shown in Scheme 2.2, the hydrophobic block 2.6 was prepared from monomers 2.3 

and 2.5 using CuAAC with Cu(PPh3)3Br in DMF. This solvent was selected for solubility 

reasons. Initial polymerization attempts in THF provided poor results as the product 
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monomer 2.5) was used during the initial polymerization, followed by the addition of a 

large excess of 2.3 at the end of the polymerization to ensure that both ends of the 

polymer were capped with azide functionalities. Based on integration of the peak at 4.17 

ppm corresponding to the methylene groups adjacent to the terminal azides, relative to 

those of peaks corresponding to the repeat units throughout the polymer backbone, the 

degree of polymerization of 2.6 was ~55. Based on the repeat unit molar mass of 692 

g/mol, this corresponds to an Mn of ~38 kg/mol. A peak at 2110 cm-1 in the IR spectrum 

confirmed the presence of azide groups on the polymer. SEC in DMF suggested an Mn of 

24 kg/mol and a dispersity index (Đ) of 1.65 relative to polystyrene standards. The 

differences in these Mns may arise from the differing hydrodynamic volumes of 6 and the 

polystyrene calibration standards. In addition, although the polymerization was run very 

concentrated and in the presence of excess of monomer 2.3, which should disfavour 

intramolecular cyclization, the presence of cyclic polymer products cannot be fully 

excluded. Based on either SEC or NMR measurements, polymer 2.6 has a significantly 

higher molar mass than the photodegradable hydrophobic blocks synthesized by Zhao 

and coworkers where Mns of 14 kg/mol and 4,150 g/mol were obtained using hydroxyl-

isocyanate couplings and CuAAC respectively.14, 15  

Scheme 2.2. Synthesis of the hydrophobic polymer block 2.6. 
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based on o-nitrobenzyl esters provided a triblock copolymer with a hydrophilic mass 

fraction of only ~0.22 that formed micelles in aqueous solution.14 Therefore we coupled 

relatively short PEG blocks to polymer 2.6 with the aim of obtaining different 

morphologies. As shown in Scheme 3, propargyl ether-functionalized PEG 750 g/mol 

(2.7) and 2 kg/mol (2.8) were coupled to 2.6 using the same CuAAC conditions described 

above, to provide triblock copolymers 2.9 and 2.10 respectively. These materials were 

purified by dialysis to remove any uncoupled PEG. Based on 1H NMR spectroscopy, the 

degree of functionalization of the terminal alkynes with PEG was quantitative for 

copolymer 2.9 and ~70% for copolymer 2.10. IR data was in agreement with these results 

as the peak at 2110 cm-1 corresponding to the azide stretch in polymer 2.6 disappeared in 

copolymer 2.9, whereas a small azide peak remained for copolymer 2.10 (chapter 2 

supporting info). This data suggests low hydrophilic weight fractions of ~0.04 and ~0.07 

for copolymers 2.9 and 2.10 respectively. SEC confirmed the absence of uncoupled PEG 

in these products. The molecular weights of the polymers based on SEC did not change 

significantly upon conjugation of the PEG, with polymer 2.9 having an Mn of 23 kg/mol 

and Đ of 1.76 and 2.10 having an Mn of 25 kg/mol and Đ of 1.62. This was expected 

based on the low overall PEG content.  

Scheme 2.3. Synthesis of amphiphilic triblock copolymers 2.9 and 2.10.  
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2.2.2 Self-Assembly of Triblock Copolymers 2.9 and 2.10 in 
Aqueous Solution 
The self-assembly of copolymers 2.9 and 2.10 by nano-precipitation was investigated. 

The copolymers were first dissolved in dimethyl sulfoxide (DMSO) at a concentration of 

8 mg/mL. This DMSO solution was then either rapidly injected into water with stirring, 

providing kinetic trapping of assemblies, or water was gradually added to the DMSO 

solution with stirring over a period of approximately 1 min. This latter approach allows a 

more thermodynamically-driven assembly to occur. In each case, the final volume was 

0.9 mL H2O:0.1 mL of DMSO, with a final copolymer concentration of 0.8 mg/mL. The 

DMSO was then removed via dialysis using a 3500 g/mol MWCO membrane.  

 

A summary of the characterization data for the assemblies is presented in Table 2.1 and 

representative DLS traces and TEM images are shown in Figures 2.2 and 2.3 

respectively. For copolymer 2.9 having the shorter PEG block, DMSO into water led to 

particles with a Z-average diameter of 110 nm and a polydispersity index (PDI) of 0.17. 

TEM showed the presence of sub-50 nm particles that may be micelles, but also larger 

solid aggregates (Figure 2.3a). The addition of water into DMSO for this same polymer 

led to much larger aggregates with a Z-average diameter of 400 nm and a PDI of 0.27.  

TEM confirmed that the assemblies were a polydisperse mixture of solid particles along 

with vesicles (Figure 2.3b). For copolymer 2.10, DMSO into water provided assemblies 

with a Z-average hydrodynamic diameter of 90 nm and PDI of 0.25 as measured by DLS. 

TEM suggested that these assemblies were mainly vesicles with a relatively narrow size 

distribution, along with a small fraction of solid particles having similar dimensions 

(Figure 2.3c). The polydispersity of this sample likely arises from a small population of 

vesicles and particle aggregates. Water into DMSO provided larger assemblies having a 

Z-average hydrodynamic diameter of 230 nm and a PDI of 0.056. TEM showed that they 

were a mixture of vesicles and smaller solid particles (Figure 2.3d). 
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Table 2.1. Summary of self-assembly results for copolymers 2.9 and 2.10. 

Copolymer and 
conditions 

Hydrodynamic 
diameter (DLS) 

Polydispersity index 
(DLS) 

Morphology (TEM) 

2.9 (DMSO into 
water) 

110 nm 0.17 solid particles 

2.9 (water into 
DMSO) 

400 nm 0.27 mixture of vesicles 
and solid particles 

2.10 (DMSO into 
water) 

90 nm 0.25 mostly vesicles 

2.10 (water into 
DMSO) 

230 nm 0.056 mixture of vesicles 
and solid particles 

 

 
Figure 2.2. DLS traces for assemblies formed by copolymers 2.9 and 2.10 using 

different procedures: a) Copolymer 2.9, DMSO into water; b) Copolymer 2.9, water 

into DMSO; c) Copolymer 2.10, DMSO into water; d) Copolymer 2.10, water into 

DMSO. 
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Figure 2.3. TEM images of assemblies formed by copolymers 2.9 and 2.10 using 

different procedures: a) Copolymer 2.9, DMSO into water; b) Copolymer 2.9, water 

into DMSO; c) Copolymer 2.10, DMSO into water; d) Copolymer 2.10, water into 

DMSO. 

 

Overall, these results show that copolymers 2.9 and 2.10 self-assemble into spherical 

objects in water. As predicted by Discher and Eisenberg, triblock copolymer 2.9, with the 

lowest hydrophilic weight fraction (~0.04) favours the formation of polydisperse solid 

particles that likely have inverted microstructures containing multiple PEG cores within 
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coronas of polymer 2.6 and with PEG stabilizing the surface of the particle.41 Increasing 

the hydrophilic weight fraction to ~0.07 in copolymer 2.10 favours vesicle formation, 

along with a smaller population of solid particles. It should be noted that the hydrophilic 

weight fraction in copolymer 2.10 is much lower than the normal range of 0.25 to 0.45, 

which is expected to lead to vesicle formation.42 This behaviour might be explained by 

the fact that although polymer 2.6 is considered to be hydrophobic, the many triazole 

moieties throughout the backbone may impart some degree of hydrophilicity to this 

block. However, this is likely not the only factor, as Zhao and coworkers have previously 

demonstrated that a similar photodegradable polymer lacking triazoles in the polymer 

backbone self-assembled to form micelles at a hydrophilic weight fraction of only 0.22,14 

well below the hydrophilic weight fraction of > 45%, generally required for micelle 

formation.42 By using the method involving the addition of a DMSO solution of the 

polymer into water, smaller assemblies were generally obtained. This was expected as the 

rapid change in solvent can kinetically trap smaller aggregates in a non-equilibrium state. 

The assembly of mainly vesicle morphologies from copolymer 2.10 by this method was 

of particular interest because of their sub-100 nm diameters which should make them 

useful for applications such as drug delivery and medical imaging.43 

 

2.2.3 Photodegradation Studies 
The o-nitrobenzyl ester moiety is a known photolabile unit which degrades by way of a 

radical mechanism24 when irradiated with UV light. To confirm the photodegradability of 

the hydrophobic block, a solution of copolymer 2.10 in DMSO-d6 was irradiated and the 

degradation was monitored by 1H NMR spectroscopy. As shown in Figure 2.4, peaks 

corresponding to the aromatic protons labeled B and C, as well as the benzylic protons 

labeled D and E almost completely disappeared over a period of 600 min. The peak 

corresponding to protons K - N on the PEG were relatively unchanged, while the peaks 

corresponding to protons A, E, H and I underwent small changes in chemical shift as 

would be expected upon their conversion into the dicarboxylic acid product.  



www.manaraa.com

 

 

 

28 

 
Figure 2.4. 1H NMR spectra of copolymer 2.10 following different time periods of 

irradiation with UV light. Spectral changes are consistent with conversion into the 

expected products. 

 

The photodegradation of the aqueous vesicle sample obtained through nano-precipitation 

of copolymer 2.10 from DMSO into water was also studied. First, the absorption 

spectrum of the vesicles following photoirradiation was studied. As shown in Figure 2.5, 

there was a progressive increase in the absorbance at 320 nm. This corresponds to the 



www.manaraa.com

 

 

 

29 

photodegradation of the o-nitrobenzyl ester unit into the corresponding nitroso 

benzaldehyde by-products.13, 15  

 
Figure 2.5. Change in absorption spectra of vesicles (0.3 mg/mL) formed from 

polymer 2.10 following different UV irradiation periods. 

 

The vesicle degradation upon photoirradiation was also studied by DLS and TEM. As 

shown in Figure 2.6a, over a period of 500 min there was a continual decrease in the 

count rate measured by DLS. This suggests a decrease in the size and/or number of 

assemblies in solution, consistent with the expected photodegradation of the vesicles. 

Over the first 70 min, the diameter of the assemblies rapidly decreased to ~70% the initial 

size and this size did not further change throughout the experiment. We propose that 

upon partial cleavage of the photodegradable hydrophobic block over the first 100 min, 

amphiphilic PEG derivatives were generated, which reassemble from vesicles into 

micelles. Throughout the remainder of the experiment, as the hydrophobic block 

continued to degrade, the number of micelles continued decreasing, leading to decreasing 

count rates. Consistent with this interpretation, some solid spherical particles were still 

observed by TEM after 500 min. The increased time required for this photodegradation 

process relative to the UV-vis study described above can be attributed to the increased 
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concentration of the suspension as well as well as the different light source used for this 

experiment. 

 
Figure 2.6. a) Photodegradation of vesicles formed from copolymer 2.10 as 

measured by DLS count rate and diameter; b) TEM of the assemblies following 500 

min of photoirradiation (scale bar = 500 nm). 
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2.3 Experimental 
2.3.1 General Procedure and Materials 
Compounds 2.1,44 2.2,45 2.7,46 and 2.846 were synthesized according to previously 

reported procedures. Other reagents were purchased from commercial suppliers and used 

without further purification unless otherwise noted. Anhydrous N,N-dimethylformamide 

(DMF) and tetrahydrofuran (THF) were obtained from a solvent purification system 

using aluminum oxide columns. CH2Cl2 and pyridine were distilled over calcium hydride 

and all dry glassware was oven-dried overnight. Thin layer chromatography (TLC) was 

run on Macherney-Nagel Polygram SIL G/UV254 plates and columns were packed using 

SiliaFlash P60 silica (40-60 µm, 230-400 mesh). Dialyses were performed using either 12 

- 14 or 50 kg/mol molecular weight cut off (MWCO) Spectra/Por regenerated cellulose 

membranes (Spectrum Laboratories).1H NMR and 13C NMR spectra were obtained at 400 

MHz and 100 MHz respectively using a Varian Inova spectrometer. NMR chemical shifts 

are reported in ppm and are calibrated against residual solvent signals of CDCl3 (δ 7.26, 

77.2 ppm) or DMSO-d6 (δ 2.50, 39.5 ppm). Coupling constants are expressed in hertz 

(Hz). High-resolution mass spectrometry (HRMS) was performed on a Finnigan MAT 

8400 electron impact mass spectrometer. Fourier transform infrared spectroscopy (FT-IR) 

was performed on a Bruker tensor 27 instrument via thin film drop cast from CH2Cl2 on 

KBr plates for compound 2.3 and 2.5 and via mixture with KBr powder and compressed 

into a plate for polymers 2.6, 2.9, and 2.10. Size exclusion chromatography (SEC) was 

performed at a flow rate of 1 mL/min in DMF with 10 mM LiBr and 1% (v/v) 

triethylamine at 85 °C using a Waters 2695 separations module equipped with a Waters 

2414 differential refractometer and two PLgel 5 µm mixed-D (300 mm x 7.5 mm) 

columns from Polymer Laboratories connected in series. The calibration was performed 

using polystyrene standards. 

Synthesis of monomer 2.3 

Diol 2.144 (1.60 g, 8.73 mmol) and acid 2.245 (2.58 g, 26.2 mmol) were dissolved in 

CH2Cl2 (30 mL). N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride 

(EDC·HCl) (5.36 g, 27.9 mmol), pyridine (2.26 mL, 27.9 mmol), and 4-

(dimethylamino)pyridine (DMAP) (3.41 g, 27.9 mmol) were then sequentially added to 
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the reaction mixture. The resulting reaction mixture was stirred in the dark for ~24 h. The 

reaction was monitored by TLC in a 1:1 ethyl acetate (EtOAc)/hexanes system. Upon 

completion of the reaction, the solution was concentrated in vacuo, diluted with ethyl 

acetate (200 mL), and then washed with KHSO4 (3×50 mL), Na2CO3 (3×50 mL), water 

(3×50 mL) and brine (1×50 mL). The organic phase was then dried over MgSO4, filtered 

and concentrated in vacuo. The crude product was purified by silica gel chromatography 

using a 4:1 hexanes/EtOAc as the eluent to provide monomer 2.3 (2.28 g, 74.8%). 1H 

NMR (CDCl3): δ 7.51-7.63 (m, 3 H), 5.34 (s, 4 H), 3.92 (s, 4 H). 13C NMR (CDCl3): δ 

50.0, 63.1, 128.6, 130.7, 131.5, 148.9, 167.7. HRMS calculated [M + H]+ (C12H12O6N8): 

350.0849. Found: 350.0855. IR ν (cm-1): 2920, 2100, 1750, 1540, 1180. 

Synthesis of monomer 2.5 

Compound 2.144 (1.00 g, 5.46 mmol) and acid 2.4 (1.61 g, 16.4 mmol) were dissolved in 

CH2Cl2 (30 mL). EDC·HCl (3.35 g, 17.5 mmol), pyridine (1.41 mL, 17.5 mmol), and 

DMAP (2.13 g, 17.5 mmol) were then sequentially added to the reaction mixture and it 

was stirred for ~24 h in the dark. The reaction was monitored by TLC in a 1:1 ethyl 

acetate (EtOAc)/hexanes system. Upon completion of the reaction, the solution was 

concentrated in vacuo and then diluted in ethyl acetate (200 mL), washed with KHSO4 

(3×50 mL), Na2CO3 (3×50 mL), water (3×50 mL) and brine (1×50 mL). The organic 

fraction was then dried over MgSO4, filtered and concentrated. The crude product was 

purified by silica gel chromatography using a 4:1 hexanes/EtOAc as the eluent to provide 

monomer 2.5 (1.41 g, 75.4 %). 1H NMR (CDCl3): δ 7.50 - 7.54 (m, 3 H), 5.25 (s, 4 H), 

2.58-2.62 (m, 4 H), 2.49-2.52 (m, 4 H), 1.98 (t, J = 2.5, 2 H). 13C NMR (CDCl3): δ 14.1, 

32.9, 62.2, 69.2, 82.0, 129.2, 130.0, 131.1, 148.7, 170.9. HRMS cald [M + H]+ 

(C18H17O6N): 344.1134. Found: 344.1132. IR ν (cm-1): 3300, 2120, 1740, 1540, 1370, 

1160. 

Synthesis of polymer 2.6 

Monomers 2.3 (0.539 g, 1.54 mmol) and 2.5 (0.500 g, 1.46 mmol) were combined in a 

flask with bromotris(triphenylphosphine) copper(I) (54.3 mg, 0.0584 mmol) and 

dissolved in dry DMF (6 mL). The solution was subjected to three freeze-pump-thaw 

cycles before being heated in the dark at 60 °C, for 4 h. At this point, excess azide-
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terminated monomer 2.3 (51.0 mg, 0.146 mmol) was added. After stirring overnight, the 

polymerization was cooled to room temperature and the solution was dialyzed using a 50 

kg/mol MWCO membrane against DMF. After 8 h the dialysate was changed to water 

and dialysis was continued for an additional 16 h. Polymer 2.6 was isolated by 

lyophilization as a white powder (0.95 g, 87.2%). 1H NMR (DMSO-d6): δ 7.85 (s, 104 

H), 7.56 - 7.75 (m, 356 H), 5.39 (s, 215 H), 5.29 (s, 214 H), 5.25 (s, 12 H), 5.18 (s, 236 

H), 4.55 - 4.58 (m, 10 H), 4.17 (s, 4 H), 2.86 - 2.93 (m, 234 H), 2.66 - 2.74 (m, 237 H). 

SEC: Mn = 24 kg/mol, Đ = 1.65. IR ν (cm-1): 3440, 3150, 3090, 2950, 2110, 1760, 1530, 

1360, 1190. 

Synthesis of triblock copolymer 2.9 

Polymer 2.6 (250 mg, ~13 µmol of azide), alkyne-terminated PEG 2.7 (16.9 mg, 21.0 

µmol) and bromotris(triphenylphosphine) copper(I) (0.390 mg, 42.0 µmol) were 

dissolved in DMF (3 mL). Air was removed through three cycles of freeze-pump-thaw 

and then the reaction mixture was heated at 60 °C in the dark for 24 h. It was then cooled 

to room temperature and dialyzed against DMF, using a 12 - 14 kg/mol MWCO dialysis 

membrane for 8 h then against water for 16 h. Lyophilization provided 2.9 as a white 

solid (250 mg, 96%). 1H NMR (DMSO-d6): δ 7.87 (s, 103 H), 7.56 - 7.78 (m, 356 H), 

5.41 (s, 206 H), 5.31 (s, 206 H), 5.26 (s, 12 H), 5.19 (s, 218 H), 4.56 - 4.59 (m, 11 H), 

3.48 - 3.53 (m, 135 H), 3.24 (s, 6 H), 2.85 - 2.95 (m, 213 H), 2.67 - 2.76 (m, 222 H). 

SEC: Mn = 23 kg/mol, Đ = 1.76. IR ν (cm-1): 3460, 3150, 3090, 2950, 1740, 1530, 1360, 

1190. 

Synthesis of triblock copolymer 2.10 

The same procedure described above for the synthesis of triblock copolymer 2.9 was 

followed, except that alkyne-functionalized PEG 2.8 (43.4 mg, 21.0 µmol) was used. 

Copolymer 2.10 was isolated by lyophilization (265 mg, > 99%). 1H NMR (DMSO-d6) δ: 

7.85 (s, 103 H), 7.54 - 7.74 (m, 350 H), 5.39 (s, 209 H), 5.28 (s, 209 H), 5.24 (s, 12 H), 

5.16 (s, 221 H), 4.51 - 4.58 (m, 10 H), 3.49 (s, 258 H), 3.20 - 3.23 (m, 4 H), 2.82 - 2.93 

(m, 217 H), 2.63 - 2.74 (m, 220 H). SEC: Mn = 25 kg/mol, Đ = 1.62. IR (cm-1) 3460, 

3150, 3090, 2950, 1750, 1530, 1360, 1180. 
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Polymer self-assembly 

An 8 mg/mL solution of the polymer was prepared in DMSO and was stirred overnight to 

ensure complete solubilization. It was then filtered using a Dynagard® polypropylene 

syringe filter (0.2 µm, surface area 0.8 m2). Next, either 0.1 mL of the DMSO solution 

was rapidly injected into 0.9 mL of filtered (Acrodisc® 25 mm syringe filter with 0.1 µm 

Supor® membrane) deionized water with rapid stirring or 0.9 mL of filtered, deionized 

water was added to 0.1 mL of the DMSO solution with rapid stirring over a period of ~ 1 

minute. The resulting suspension was then dialyzed against deionized water using a 3500 

g/mol MWCO membrane. 

Dynamic light scattering (DLS) 

DLS analysis was run using the 0.8 mg/mL suspensions of polymer assemblies prepared 

as described above. The measurements were performed in a 1 cm pathlength glass cuvette 

using a Zetasizer Nano ZS instrument from Malvern. Fifteen repeat diameter 

measurements were made per run to determine an average particle size and three runs per 

sample were done.  

Transmission electron microscopy (TEM) 

The suspension of assemblies (5 µL, 0.1 mg/mL) was placed on a copper Formvar/carbon 

support film coated grid and was left to stand for 5 min. The excess solution was then 

blotted off using a piece of filter paper. The resulting sample was dried in air overnight 

before imaging. Imaging was performed using a Phillips CM10 microscope operating at 

80 kV with a 40 µm aperture. 

NMR study of photodegradation 

Polymer 2.10 (5 mg/mL) was dissolved in DMSO-d6 and transferred to a quartz NMR 

tube. Over the course of 600 min, the sample was irradiated with a Hanovia medium 

pressure mercury lamp (PC 451050/616750, 450 Wage). The sample was placed 10 cm 

from the lamp with one face of the NMR tube directly facing the lamp. The degradation 

was monitored by 1H NMR at various time intervals using a 600 MHz Varian Inova 

spectrometer. 
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UV-visible (UV-vis) spectroscopy study of photodegradation 

Assemblies (0.3 mg/mL) prepared from copolymer 2.10 via the DMSO into water 

method were used. The measurements were performed in a 1 cm pathlength quartz 

cuvette, using a Varian Cary 300 Bio UV-visible spectrophotometer, over a wavelength 

range of 200 - 800 nm. Photoirradiation was performed using a model LZC-4X Luzchem 

Photoreactor equipped with Luzchem LZC-UVB lamps. The sample as placed in the 

middle of a rotating platform, 15 cm from the lamps. Multiple lamps were on two walls 

and the ceiling of the lightbox therefore continuously irradiating the sample from 

multiple sides. Spectra were obtained at various time points over a period of 7.5 min. 

Dynamic light scattering study of photodegradation 

Assemblies (0.8 mg/mL) prepared from copolymer 2.10 via the DMSO into water 

method were placed in a 1 cm pathlength quartz cuvette. The sample was irradiated using 

a Hanovia medium pressure mercury lamp (PC 451050/616750, 450 Wage). The sample 

was placed 10 cm from the lamp with one face of the cuvette directly facing the lamp. 

Measurements were performed at various time points using a Zetasizer Nano ZS 

instrument from Malvern, keeping all instrument parameters constant throughout the 

study. 

 

2.4 Conclusions 

Photodegradable triblock copolymers with low hydrophilic weight fractions of 0.04 and 

0.07 were prepared by a CuAAC polymerization of photodegradable diazide and dialkyne 

monomers, followed by CuAAC conjugation of PEG. The self-assembly of these 

materials by nano-precipitation methods was studied. It was found that mixtures of 

vesicles and polydisperse solid particles probably having inverted microstructures were 

formed from these materials. The procedure involving the addition of a DMSO solution 

of polymer into water led to smaller assemblies than the inverse procedure. For the 

copolymer with the longer PEG blocks, assemblies comprising mainly vesicles were 

obtained by this procedure. The photodegradation of the triblock copolymer in DMSO 

was studied by 1H NMR spectroscopy and the expected products were observed. In 
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addition, the photodegradation of the vesicles was studied by UV-vis, DLS, and TEM. 

These studies suggested that the vesicles degrade via conversion to micelles, followed by 

photodegradation of the micelles. This study demonstrates the potential of these new 

materials for encapsulation and release applications. 
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Chapter 3 

3 Surface Functionalization of Dendrimersomes 
 

3.1 Introduction 
Polymer assembly has been an area of significant interest for many years.1, 2, 3, 4 The 

desire to understand all that contributes to variation in aggregate morphology as well as 

exploiting different morphologies for application purposes has fueled the fire for this 

research. Polymersomes in particular have seen much interest as they share many 

structural and physical characteristics with biological membranes making them promising 

candidates for drug delivery applications.2, 5, 6, 7, 8, 9, 10, 11, 12 They are similar to biological 

membranes as they have a hydrophilic core, hydrophobic membrane and outer membrane 

surface, but can also have various groups decorating their surfaces.8, 13, 14, 15 By 

functionalizing the outer surface, biological functions can be imparted yielding another 

dynamic avenue of versatility and application. 

 

Combining both dendritic and linear polymer architectures, Gillies et al. have shown the 

surface functionalization of polymersomes with dendritic groups.6, 7, 8, 15 Dendrimers with 

a number of peripheral functional groups, such as hydroxyls, amines, guanidines, 

carbohydrates and Gd(III) chelates were synthesized. By functionalizing the 

polymersomes’ surface with each of these dendritic species they could tune 

characteristics such as toxicity, cell uptake, protein binding and contrast agent efficiency. 

To compliment this, they were also able to show comparable release rates of encapsulated 

rhodamine B and rhodamine B-labeled protein, among the different functionalized 

polymersomes.16 The group has also shown the potential for surface functionalized 

poly(ethylene oxide)-polycaprolactone polymersomes to interact with and inhibit the 

influenza virus from binding host cells.9 Through surface functionalization with sialic 

acid (N-acetylneuraminic acid), binding to a sialic acid-binding lectin was observed 

serving as a model for the binding of a sialic acid-binding protein on the surface of the 

virus. Encapsulated within the polymersomes’ core was the neuraminidase inhibitor 
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zanamivir which prevents the release of progeny virus from the host cell thereby 

inhibiting viral replication.9 

 

Using only amphiphilic dendrimers to provide surface functionalized assemblies, Percec 

et al. have also shown the first synthesis and self-assembly of what they termed “Janus 

glycodendrimers” made with D-mannose, D-galactose or D-lactose. These dendrimers 

were shown to assemble into “glycodendrimersomes”, “glycomicelles” and 

“glycocubosomes” whose carbohydrate multivalency yielded promising properties as 

new mimics of biological membranes with programmable glycan ligand presentations. 

These glycol-architectures yield the potential to serve as supramolecular lectin blockers, 

vaccines and targeted delivery devices.17, 18 They used lauryl chains as the hydrophobic 

block and acetonide-deprotected, bis-MPA polyester dendrons as the hydrophilic block, 

finding an inverse proportionality between size, stability, mechanical properties of 

dendrimersomes and the thickness of their membrane.19, 20 

 

Rather than needing to pre-synthesize amphiphilic dendrons with functional peripheral 

moieties such as carbohydrates, the goal of the current work is to provide a platform 

based on amphiphilic dendrons onto which specific groups can be “clicked” post-

assembly. Specifically the goal of this chapter is to describe the synthesis of a novel 

Janus dendrimer having surface azide groups. The Janus dendrimer will be subjected to 

self-assembly with the aim of obtaining dendrimersomes having surface azide groups. 

Having surface functionalized dendrimersomes will yield the capacity for cellular 

targeting. For example, studies have shown the functionalization of certain dendrimers 

with tumor targeting ligands such as folic acid,21 arginine-glycine-aspartic acid peptide,22 

and lactobionic acid can lead to more effective tumor targeting drug deliver vehicles.23  
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3.2 Results and Discussions 
3.2.1 Synthesis of Janus Dendrimers 3.7 and 3.12 
Dendrimer synthesis can occur convergently, divergently or by way of a combination of 

the two. Likewise, Janus dendrimers can be synthesized in the same fashion with a final 

coupling step to link the two blocks. Our group has had much success in polyester 

dendrimer synthesis by using the bis-MPA monomer anhydride along with DMAP and 

pyridine.24 This method is very effective growing to the fourth generation dendron, 

however it has also been shown to be able to grow up to the sixth generation.25 Growth 

becomes increasingly difficult at higher generations due to steric bulk as well as the size 

and reactivity of the anhydride. To prepare dendrons with acetonide peripheral groups, 

third and fourth generation dendrons, 3.124 and 3.8 24 (Figure 3.1), were prepared using a 

previously reported procedure.24 

 
Figure 3.1. Third and fourth generation dendrons, 3.1 and 3.8 respectively, 

prepared by previously reported procedures.24 

 

As shown in Scheme 3.1, the focal point benzyl ester 3.124 was then cleaved by 

hydrogenolysis in EtOAc and MeOH, providing 3.2. 4-Aminobutyric acid (3.326) was 

then coupled to the focal point acid using o-(6-chlorobenzotriazol-1-yl)-N,N,N’,N’-

tetramethyluronium hexafluorophosphate (HCTU) and N, N-diisopropylethylamine 

(DIPEA) to afford 3.4. It acts as a tether between the hydrophobic and hydrophilic 
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blocks, providing enough space between the two that they may be effectively coupled 

without hindrance of the reactive site. Untethered dendrons were unable to be coupled 

with the hydrophilic block, presumably because of the steric crowding from the dendritic 

backbones. After attaching the tether, the benzyl ester was cleaved by hydrogenolysis 

using the method described above to provide 3.5 and then the hydrophilic block 3.627, 

prepared as previously reported,27 was subsequently coupled using EDC·HCl, DMAP and 

pyridine, forming the amphiphilic Janus dendrimers 3.7. As shown in Scheme 3.2, the 

fourth generation dendron 3.824 was converted to the corresponding amphiphilic Janus 

dendrimer 3.12 using the same methods as described for the third generation dendron. 

Both of the resulting Janus dendrimers 3.7 and 3.12 were characterized by 1H NMR 

spectroscopy. 

Scheme 3.1. Synthesis of Janus dendrimer 3.7. 
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Scheme 3.2. Synthesis of Janus dendrimer 3.12. 

 
 

3.2.2 Self-Assembly of Janus Dendrimers 3.7 and 3.12 in 
Aqueous Solution 
Aggregate morphology is largely dictated by hydrophilic volume fraction,2 but the 

hydrophilic to hydrophobic weight ratio can give an adequate estimation of the volume 

fraction and therefore be a guide to predicting morphologies. Janus dendrimers 3.7 and 

3.12 were prepared for this study and their hydrophilic mass fractions are summarized in 

Table 3.1. Considering the preparation of these Janus dendrimers was performed via 

coupling of the hydrophilic gallic acid moiety and the hydrophobic tethered dendron 

moiety, the hydrophilic mass ratios were calculated by considering these components as 

the hydrophilic and hydrophobic fractions respectively. 
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Table 3.1. Hydrophilic weight fraction of Janus dendrimers 3.7 and 3.12. 

  Total MW (g/mol) Hydrophilic mass fraction 
Dendrimer 3.7 1653 0.36 
Dendrimer 3.12 2742 0.22 

 

The self-assembly of each of these dendrimers was studied using the nano-precipitation 

method. Janus dendrimers were dissolved in either DMSO or THF and this organic 

solution was added to water, or water was added to the organic solution of the dendrimer. 

The organic solvent was then removed via dialysis and the assemblies were characterized 

by DLS and TEM. Table 3.2 and Figure 3.2 summarize these results. 

Table 3.2. Summary of self-assembly results for Janus dendrimers 3.7 and 3.12. 

Dendrimer and 
conditions 

Hydrodynamic 
diameter (DLS) 

Polydispersity 
index (DLS) 

Morphology 
(TEM) 

Dendrimer 3.7 
(DMSO into water) 

230 0.19 solid 
aggregates 

Dendrimer 3.7 (water 
into DMSO) 

250 0.22 solid 
aggregates 

Dendrimer 3.12 
(DMSO into water) 

1070 0.48 solid 
aggregates 

Dendrimer 3.12 (water 
into DMSO) 

610 0.36 solid 
aggregates 

Dendrimer 3.12 (THF 
into water) 

320 0.32 solid 
aggregates 

Dendrimer 3.12 (water 
into THF) 

400 0.26 solid 
aggregates 

 

 



www.manaraa.com

 

 

 

46 

a) 

 

b) 

 

c) 
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Figure 3.2. TEM images of assemblies formed by Janus dendrimers 3.7 and 3.12 

using different procedures: a) Janus dendrimer 3.7, DMSO into water (left) and 

water into DMSO (right); b) Janus dendrimer 3.12, DMSO into water (left) and 

water into DMSO (right); c) Janus dendrimer 3.12, THF into water (left) and water 

into THF (right). 

 

Most assemblies of the Janus dendrimers were solid aggregates as indicated by TEM 

imaging (Figure 3.2), however the sizes of these particles, measured by DLS, were much 

too large to be true micelles. Based on the hydrophilic mass fractions for 3.7 (0.36) and 

3.12 (0.22), it is feasible that micelles and even vesicles may have formed in solution. 

This suggests that micelles or vesicles may form, but are unstable due to the molecular 

architecture of the dendrimers, resulting in aggregation or other undesirable drying 

effects during TEM grid preparation. This has been previously observed for the lower 

generations of our previously reported photodegradable amphiphilic Janus dendrimers.28 

 

3.2.3 Synthesis of Janus Dendrimers 3.18 and 3.22 
After having seen the assembly results of Janus dendrimers 3.7 and 3.12, it was clear, if 

dendrimersomes were to form, that the hydrophobic content provided by terminal 

acetonide groups was not sufficient. It was hypothesized that the hydrophobic content 

needed to be increased while maintaining a fluid and malleable hydrophobic membrane. 

Based on previous work by Percec and coworkers20, 29 the proposed solution was an 

amphiphilic dendrimer with peripheral acyl chains instead of growing to the fifth 

generation with the terminal acetone groups. 

 

As shown in Scheme 3.3, to prepare dendrons with terminal acyl groups, the second 

generation acetonide-deprotected dendron 3.1324 was prepared from previously reported 

procedures and acylated using lauroyl chloride in pyridine. Acylated dendron 3.14 was 

carried through similar synthetic steps to those described above for the preparation of 

Janus dendrimers 3.7 and 3.12 to yield Janus dendrimer 3.18. 
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Scheme 3.3. Synthesis of Janus dendrimer 3.18. 

 
 

A third generation acyl-terminated dendron was synthesized as shown in Scheme 3.4. 

The acetonide protecting groups of dendron 3.4, prepared as described in Scheme 3.1, 

were removed using H2SO4 in MeOH and the resulting dendron 3.19 was acylated 

yielding dendron 3.20. The benzyl protecting group was then cleaved through 

hydrogenolysis and the resulting dendron 3.21 was coupled to the hydrophilic block 3.627 

using EDC·HCl, DMAP and pyridine to yield Janus dendrimer 3.22. Janus dendrimers 

3.18 and 3.22 were characterized by 1H NMR, 13C NMR and IR spectroscopy, as well as 

SEC and mass spectrometry. 
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Scheme 3.4. Synthesis of Janus dendrimer 3.22. 

 
 

3.2.4 Self-Assembly of Janus Dendrimers 3.18 and 3.22 in 
Aqueous Solution 
Janus dendrimers 3.18 and 3.22 were prepared for this study and their hydrophilic mass 
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The self-assembly of each of these dendrimers was studied using the nano-precipitation 

method. Janus dendrimers were dissolved in either DMSO or THF and this organic 

solution was added to water, or water was added to the organic solution of the dendrimer. 

The organic solvent was removed via dialysis from dendrimer 3.18 assembliess while 

dendrimer 3.22 was allowed to stir open, overnight, to allow THF to evaporate. The 

assemblies were characterized by DLS and TEM. Table 3.4 and Figure 3.3 summarize 

these results. 

Table 3.4. Summary of self-assembly results for Janus dendrimers 3.18 and 3.22. 

Dendrimer and 
conditions 

Hydrodynamic 
diameter (DLS) 

Polydispersity 
index (DLS) 

Morphology 
(TEM) 

Dendrimer 3.18 
(DMSO into water) 

140 0.09 solid aggregates 

Dendrimer 3.18 
(water into DMSO) 

490 0.06 solid aggregates 

Dendrimer 3.18 (THF 
into water) 

1030 0.22 solid aggregates 

Dendrimer 3.18 
(water into THF) 

850 0.74 solid aggregates 

Dendrimer 3.22 (THF 
into water) 

230 0.04 solid aggregates 

Dendrimer 3.22 
(water into THF) 

260 0.29 vesicles and solid 
particles 
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a) 

 

b) 

 

c) 
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Figure 3.3. TEM images of assemblies formed by Janus dendrimers 3.18 and 3.22 

using different procedures: a) Janus dendrimer 3.18, DMSO into water (left) and 

water into DMSO (right); b) Janus dendrimer 3.18, THF into water (left) and water 

into THF (right); c) Janus dendrimer 3.22, THF into water (left) and water into 

THF (right). 

 

Self-assembly of Janus dendrimer 3.18 resulted in solid aggregates in each of the particle 

formation procedures. In the case where DMSO was used as solvent, the DLS results 

matched the size of the particles seen by TEM whereas when THF was used as solvent, 

the particles appeared much larger by DLS compared to the TEM images. The cause of 

this may be due to aggregation of the particles at higher concentrations during DLS. 

Janus dendrimer 3.22 was not soluble in DMSO so self-assembly was performed 

exclusively with THF. As observed by TEM, when water was added to the 

THF/dendrimer solution, the assemblies appeared to be dendrimersomes <100 nm in 

diameter while the DLS showed particles approximately 250 nm in diameter. The reason 

for the discrepancy may be from swelling in solution and then shrinkage when drying on 

the TEM grid. With this in mind, the result of adding the THF solution to water appears 

to give solid aggregates, as observed by TEM, however at a closer look, it seems that 

there is some clustering around the periphery of the aggregates which may indicate that 

disruption of the dendrimersome bilayer occurred as a result of drying on the TEM grid. 

 

3.2.5 Synthesis of Azide-Terminated Janus Dendrimer 3.25 
While the above dendrons would enable studies of the self-assembly, the ultimate goal 

was to be able to perform surface functionalization. This required access to an 

amphiphilic dendrimer having functional groups on the hydrophilic block. To accomplish 

this, an azide-terminated, methyl gallate analogue 3.2330 of hydrophilic block 3.627 was 

synthesized based on previously recorded procedures30 and then reduced using LiCl and 

NaBH4 in THF and ethanol (Scheme 3.5) to give the azide-terminated hydrophilic block 

3.24. 
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Scheme 3.5. Synthesis of azide-terminated hydrophilic block 3.24. 

 
The same synthetic strategy for preparing Janus dendrimer 3.22 was used to synthesize its 

azide analogue, 3.25 (Scheme 3.6). 

Scheme 3.6. Synthesis of azide-terminated Janus dendrimer 3.25. 

 
Hydrophilic block 3.24 was characterized by 1H NMR, 13C NMR and IR spectroscopy, as 

well as mass spectrometry, while Janus dendrimer 3.25 was characterized by the same 

methods including SEC. 
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hypothesized that the introduction of the azide groups somehow disrupts the 

hydrophilic/hydrophobic balance of these molecules. Knowing that the non-azide 

dendrimer 3.22 had formed vesicles, self-assembly was also performed with mixtures of 

the two analogues using either 20% or 5% of Janus dendrimer 3.25 with the remainder 

being Janus dendrimer 3.22. Unfortunately, this yielded large micellar aggregates in both 

cases. 

Table 3.5. Summary of self-assembly results for Janus dendrimer 3.25 and mixtures 

of 3.22 and 3.25. 

Dendrimer and 
conditions 

Hydrodynamic 
diameter (DLS) 

Polydispersity 
index (DLS) 

Morphology 
(TEM) 

Dendrimer 3.25 280 0.31 solid 
aggregates 

20% 3.25:80% 3.22 
(water into THF) 

250 0.12 solid 
aggregates 

20% 3.25:80% 3.22 
(water into THF) 
-2 kg/mol PEO 
functionalized 

190 0.15 solid 
aggregates 

5% 3.25:95% 3.22 
(water into THF) 

360 0.33 solid 
aggregates 
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a) 

 

b) 

 
Figure 3.4. TEM images of assemblies formed by Janus dendrimer 3.25 and 

mixtures of 3.22 and 3.25: a) Janus dendrimer 3.25, water into THF; b)20% 

3.25:80% 3.22 (left) and 5% 3.25:95% 3.22 (right), water into THF. 

 

3.2.7 Surface Functionalization of Dendrimer Assemblies 
Despite the lack of success in obtaining dendrimersomes with surface azide groups, the 

reactivity of the azide groups on the assemblies was studied. To achieve this, Janus 

dendrimers 3.22 and 3.25 were combined in an 80:20 ratio. The dendrimer mixture was 

dissolved in THF (0.1 mL) and while stirring, water (0.9 mL) was added dropwise. The 
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resulting particles were characterized with DLS and TEM (Table 3.5 and Figure 3.4) and 

functionalized via CuAAC chemistry by adding CuCl2, sodium ascorbate and a 2 kg/mol 

PEO-pentynoic ester to the particles. They were then dialyzed against water to remove 

excess PEG and the other reagents. The functionalized particles were characterized using 

DLS, TEM (Table 3.5 and Figure 3.5) and IR (Figure 3.6). 

 

 
Figure 3.5. TEM images of 2 kg/mol PEO functionalized assemblies formed by 20% 

3.25:80% 3.22. 
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Figure 3.6. FTIR spectra of Janus dendrimer 29, 20% 29:80% 25 dendrimer 

assemblies, and 20% 29:80% 25 dendrimer assemblies functionalized with 2 kg/mol 

PEO-pentynoic ester. 

 

Figure 3.6 shows the IR spectra of Janus dendrimer 3.25, the assemblies formed by the 

80/20 mixture of 3.22 and 3.25 and the 2 kg/mol PEO functionalized versions of those 

particles. Evidence of the success of the reaction is observed through the disappearance 

of the azide stretch at 2100 cm-1. It does not provide quantification of the yield of the 

reaction, but indicates that it was successful and therefore yielded surface functionalized 

dendrimer assemblies. 

 

3.3 Experimental 
3.3.1 General Procedure and Materials 
Compounds 3.1,24 3.3,26 3.8,24 3.13,24 3.6,27 and 3.2330 were synthesized using previously 

reported procedures. Other reagents were purchased from commercial suppliers and used 

without further purification unless otherwise noted. Tetrahydrofuran (THF) was obtained 

from a solvent purification system using aluminum oxide columns. CH2Cl2 and pyridine 

were distilled over calcium hydride and all dry glassware was oven-dried overnight. Thin 

layer chromatography (TLC) was run on Macherney-Nagel Polygram SIL G/UV254 plates 
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and columns were packed using SiliaFlash P60 silica (40-60 µm, 230-400 mesh). 

Dialyses were performed using either 3.5 or 10 kg/mol molecular weight cut off 

(MWCO) Spectra/Por regenerated cellulose membranes (Spectrum Laboratories). 1H 

NMR and 13C NMR spectra were obtained at 400/600 MHz and 100/151 MHz 

respectively using a Varian Inova spectrometer. NMR chemical shifts are reported in 

ppm and are calibrated against residual solvent signals of CDCl3 (δ 7.26, 77.2 ppm) or 

DMSO-d6 (δ 2.50, 39.5 ppm). Coupling constants are expressed in Hertz (Hz). High-

resolution mass spectrometry (HRMS) was performed on a Finnigan MAT 8400 electron 

impact mass spectrometer. Attenuated total reflection-fourier transform infrared 

spectroscopy (ATR-FTIR) was performed on a Perkin Elmer Spectrum TwoTM FT-IR 

spectrometer using thin film drop cast from CHCl3. The GPC instrument was equipped 

with a Viscotek GPC Max VE2001 solvent module. Samples were analyzed using the 

viscotek VE3580 RI detector operating at 30 °C. The separation technique employed two 

Agilent Polypore (300x7.5mm) columns connected in series and to a Polypore guard 

column (50x7.5mm). Samples were dissolved in THF (glass distilled grade) in 

approximately 5 mg/mL concentrations and filtered through 0.22 µm syringe filters. 

Samples were injected using a 100 µL loop. The THF eluent was filtered and eluted at 1 

mL/min for a total of 30 minutes. A calibration curve was obtained from polystyrene 

samples with molecular weight ranges of 1540-1,126,000 g/mol. DLS data were obtained 

using a Zetasizer Nano ZS instrument from Malvern Instruments. 

Synthesis of benzyl-deprotected G3 dendron 3.2 

Dendron 3.124 (660 mg) was dissolved in an EtOAc/MeOH mixture (60 mL, 4:1) and the 

solution was purged with argon for 5 minutes. Pd/C (10% wt) was then added and the 

resulting mixture was purged with and placed under H2 for 4 hours. It was then filtered 

through celite and concentrated in vacuo to yield a quantitative amount of compound 3.2, 

which was taken to the next step without further purification. Complete removal of the 

benzyl ester was confirmed by 1H NMR spectroscopy. 1H NMR (599 MHz, CDCl3) δ 

4.25 - 4.42 (m, 12H), 4.20 – 4.18 (m, 8H), 3.62 - 3.66 (m, 8H), 1.44 (s, 12H), 1.36 - 1.40 

(m, 12H), 1.28 - 1.33 (m, 9H), 1.08 - 1.14 (m, 12H). 
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Synthesis of tethered G3 dendron 3.4 

Dendron 3.2 (220 mg, 0.222 mmol) was dissolved in dry CH2Cl2 (15 mL) and stirred for 

2 hours with HCTU (101 mg, 0.266 mmol) and DIPEA (0.191 mL, 1.11 mmol). 

Compound 3.326 (80.0 mg, 0.222 mmol) was then added to the reaction mixture and 

stirred for 48 hours. It was diluted in CH2Cl2 and washed with KHSO4 and Na2CO3 twice 

each, and brine once before being dried with MgSO4 and concentrated in vacuo. The 

crude mixture was purified via column chromatography with a 40% EtOAc/hexanes 

solvent system yielding 100 mg (39%) of compound 3.4. 1H NMR (CDCl3): δ 7.31 - 7.39 

(m, 5 H), 6.53 - 6.57 (m, 1 H), 5.13 (s, 2 H), 4.27 - 4.37 (m, 12 H), 4.14 - 4.16 (m, 8 H), 

3.62 (d, J=11.7 Hz, 8 H), 3.30 - 3.35 (m, 2 H), 2.43 - 2.48 (m, 2 H), 1.85 - 1.91 (m, 2 H), 

1.42 (s, 12 H), 1.35 (s, 12 H), 1.28 (s, 6 H), 1.25 (s, 3 H), 1.14 (s, 12 H). 13C NMR 

(CDCl3): δ 173.5, 173.3, 171.7, 171.6, 135.7, 128.5, 128.2, 128.1, 98.0, 67.1, 66.4, 65.8, 

64.9, 60.2, 46.8, 46.2, 42.0, 39.4, 31.7, 25.3, 24.1, 21.7, 18.4, 18.3, 17.6, 17.5, 14.1 ppm. 

(C58H87NO23) calculated=1165.5669. HRMS cald [M+Na]+=1188.5561. Obs=1188.5567. 

SEC: Mn=945 g/mol, Đ=1.01. IR ν (cm-1): 3418, 2924, 2854, 1740. 

Synthesis of benzyl-deprotected tethered G3 dendron 3.5 

Compound 3.4 (100 mg, 85.9 µmol) was dissolved in 4:1 EtOAc/MeOH (15 mL) mixture 

and purged with nitrogen. Palladium on carbon (10% by wt.) (10 mg) was then added 

before the reaction was purged with hydrogen and stirred under a hydrogen balloon for 

four hours. The reaction was then filtered through celite and concentrated in vacuo to 

yield 90 mg (98%) of compound 3.5, which was taken to the next step without further 

purification. Complete removal of the benzyl ester was confirmed by 1H NMR 

spectroscopy. 1H NMR (CDCl3) δ 7.02 - 7.07 (m, 1H), 4.28 - 4.35 (m, 8H), 4.21 - 4.27 

(m, 4H), 4.15 - 4.19 (m, 8H), 3.61 - 3.65 (m, 8H), 3.35 - 3.41 (m, 2H), 2.45 - 2.51 (m, 

2H), 1.86 - 1.92 (m, 2H), 1.42 (s, 12H), 1.35 (s, 12H), 1.28 (s, 6H), 1.26 (s, 3H), 1.13 (s, 

12H). 

Synthesis of G3 Janus dendrimer 3.7 

Compound 3.5 (90.0 mg, 83.8 µmol) was dissolved in CH2Cl2 along with EDC·HCl (15.0 

mg, 83.8 µmol), DMAP (10.0 mg, 83.8 µmol) and pyridine (8 µL, 105 µmol). The 

reaction mixture was stirred for 20 minutes before having hydrophilic block 3.627 (41.0 
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mg, 69.8 µmol) added to it and being left for 48 hours. At this point the reaction was 

diluted in CH2Cl2 and washed with KHSO4 and Na2CO3 twice each, and brine once 

before being dried with MgSO4 and concentrated in vacuo. The residue was purified via 

prep TLC using a 10% MeOH in EtOAc solvent system. This yielded 30 mg of the 

desired product. 1H NMR (CDCl3): δ 6.58 (s, 2 H), 6.52 (t, J=5.3 Hz, 1 H), 4.99 (s, 2 H), 

4.28 - 4.39 (m, 8 H), 4.20 - 4.28 (m, 6 H), 4.12 - 4.20 (m, 14 H), 3.83 - 3.88 (m, 4 H), 

3.77 - 3.81 (m, 2 H), 3.71 - 3.76 (m, 6 H), 3.60 - 3.69 (m, 18 H), 3.53 - 3.58 (m, 6 H), 

3.38 (s, 9 H), 3.29 - 3.36 (m, 2 H), 2.44 (t, J=7.0 Hz, 2 H), 1.84 - 1.92 (m, 2 H), 1.39 - 

1.45 (m, 12 H), 1.33 - 1.39 (m, 12 H), 1.29 (s, 6 H), 1.27 (m, 3 H), 1.11 - 1.17 (m, 12 H). 

Synthesis of benzyl-deprotected G4 dendron 3.9 

Dendron 3.824 (600 mg) was dissolved in an EtOAc/MeOH mixture (60 mL, 4:1) and 

purged with argon for 5 minutes. Pd/C (10% wt) was then added and the resulting 

mixture was purged with and placed under H2 for 4 hours. It was then filtered through 

celite and concentrated in vacuo to yield a quantitative amount of compound 3.9, which 

was taken to the next step without further purification. Complete removal of the benzyl 

ester was confirmed by 1H NMR spectroscopy. 1H NMR (CDCl3) δ 4.19 - 4.38 (m, 28H), 

4.13 - 4.19 (m, 16H), 3.59 - 3.67 (m, 16H), 1.42 (s, 24H), 1.36 (s, 24H), 1.32 (s, 3H), 

1.28 - 1.30 (m, 18H), 1.15 (s, 24H). 

Synthesis of tethered G4 dendron 3.10 

Dendron 3.9 (550 mg, 0.265 mmol) was dissolved in dry CH2Cl2 (15 mL) and stirred for 

2 hours with HCTU (120 mg, 0.317 mmol) and DIPEA (0.230 mL, 1.32 mmol). 

Compound 3.326 (116 mg, 0.317 mmol) was then added to the reaction mixture and 

stirred for 48 hours. It was diluted in CH2Cl2 and washed with KHSO4 and Na2CO3 twice 

each, and brine once before being dried with MgSO4 and concentrated in vacuo. The 

crude mixture was purified via column chromatography with a 40% EtOAc/hexanes 

solvent system yielding 400 mg (65%) of compound 3.10. 1H NMR (CDCl3) δ 7.31 - 7.39 

(m, 5H), 6.58 - 6.64 (m, 1H), 5.12 (s, 2H), 4.19 - 4.37 (m, 28H), 4.12 - 4.17 (m, 16H), 

3.58 - 3.66 (m, 16H), 3.26 - 3.35 (m, 2H), 2.40 - 2.48 (m, 2H), 1.84 - 1.91 (m, 2H), 1.41 

(s, 24H), 1.35 (s, 24H), 1.24 - 1.30 (m, 21H), 1.14 (s, 24H). 
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Synthesis of benzyl-deprotected tethered G4 dendron 3.11 

Compound 3.10 (400 mg) was dissolved in 4:1 EtOAc/MeOH (40 mL) mixture and 

purged with nitrogen. Palladium on carbon (10% by wt.) (40 mg) was then added before 

the reaction was purged with hydrogen and stirred under a hydrogen balloon for four 

hours. The reaction was then filtered through celite and concentrated in vacuo to a 

quantitative yield of compound 3.11, which was taken to the next step without further 

purification. Complete removal of the benzyl ester was confirmed by 1H NMR 

spectroscopy. 1H NMR (CDCl3) δ 6.90 - 6.94 (m, 1H), 4.21 - 4.38 (m, 28H), 4.13 - 4.19 

(m, 16H), 3.59 - 3.68 (m, 16H), 3.33 - 3.38 (m, 2H), 2.43 - 2.48 (m, 2H), 1.85 - 1.92 (m, 

2H), 1.42 (s, 24H), 1.36 (s, 24H), 1.27 - 1.31 (m, 21H), 1.15 (s, 24H). 

Synthesis of G4 Janus dendrimer 3.12 

Compound 3.11 (73.5 mg, 33.6 µmol) was dissolved in CH2Cl2 along with EDC·HCl 

(9.68 mg, 50.5 µmol), DMAP (6.16 mg, 50.5 µmol) and pyridine (4.07 µL, 50.5 µmol). 

The reaction mixture was stirred for 20 minutes before having hydrophilic block 3.627 

(30.0 mg, 50.5 µmol) added to it and being left for 48 hours. At this point the reaction 

was diluted in CH2Cl2 and washed with KHSO4 and Na2CO3 twice each, and brine once 

before being dried with MgSO4 and concentrated in vacuo. The residue was purified via 

prep TLC using a 20% MeOH in EtOAc solvent system. This yielded 70 mg (75%) of the 

desired product. 1H NMR (CDCl3) δ 6.88 - 6.94 (m, 1H), 6.58 (s, 2H), 4.98 (s, 2H), 4.20 - 

4.36 (m, 40H), 4.12 - 4.18 (m, 28H), 3.83 - 3.87 (m, 3H), 3.77 - 3.81 (m, 2H), 3.70 - 3.76 

(m, 5H), 3.59 - 3.69 (m, 33H), 3.51 - 3.59 (m, 6H), 3.37 (s, 9H), 3.27 - 3.34 (m, 2H), 2.39 

- 2.48 (m, 2H), 1.82 - 1.90 (m, 2H), 1.41 - 1.42 (m, 24H), 1.34 - 1.36 (m, 24H), 1.27 - 

1.30 (m, 21H), 1.14 (s, 24H). 

Synthesis of lauryl G2 dendron 3.14  

Compound 3.1324 (250 mg, 0.565 mmol) was dissolved in pyridine (5 mL) and placed in 

an ice bath. After stirring on ice for five minutes, lauroyl chloride (507 mg, 2.32 mmol) 

was added dropwise and left to stir at room temperature overnight. The reaction mixture 

was diluted in CH2Cl2 and washed twice with KHSO4 and once with brine. The organic 

fraction was dried with MgSO4 and concentrated in vacuo to give a quantitative yield of 

compound 3.14. 1H NMR (CDCl3): δ 7.32 - 7.39 (m, 5 H), 5.16 (s, 2 H), 4.28 (q, J=11.1 



www.manaraa.com

 

 

 

62 

Hz, 4 H), 4.10 - 4.20 (m, 8 H), 2.28 (t, J=7.6 Hz, 8 H), 1.52 - 1.62 (m, 16 H), 1.20 - 1.35 

(m, 56 H), 1.17 (s, 6 H), 0.89 (t, J=7.0 Hz, 12 H). 13C NMR (CDCl3): δ 173.1, 172.0, 

171.9, 135.3, 128.6, 128.4, 128.3, 67.1, 65.7, 64.9, 46.7, 46.3, 41.8, 34.0, 31.9, 31.5, 30.2, 

29.6, 29.4, 29.3, 29.2, 29.1, 24.8, 22.6, 17.7, 17.5, 14.1 ppm. (C70H120O14) 

calculated=1184.8678. HRMS [M+Na]+ cald=1207.8570. Obs=1207.8576. SEC: 

Mn=1450 g/mol, Đ=1.10. IR ν (cm-1): 2923, 2853, 1741. 

Synthesis of benzyl-deprotected lauryl G2 dendron 3.15 

Dendron 3.14 (1.00 g) was dissolved in an EtOAc/MeOH mixture (100 mL, 4:1) and 

purged with argon for 5 minutes. Pd/C (10% wt) was then added and the resulting 

mixture was purged with and placed under H2 for 4 hours. It was then filtered through 

celite and concentrated in vacuo to yield a quantitative amount of compound 3.15, which 

was taken to the next step without further purification. Complete removal of the benzyl 

ester was confirmed by 1H NMR spectroscopy. 1H NMR (CDCl3) δ 4.16 - 4.32 (m, 12H), 

2.30 (t, J = 7.62 Hz, 8H), 1.53 - 1.64 (m, 16H), 1.18 - 1.36 (m, 62H), 0.84 - 0.93 (m, 

12H). 

Synthesis of tethered lauryl G2 dendron 3.16 

Dendron 3.15 (760 mg, 0.694 mmol) was dissolved in dry CH2Cl2 (50 mL) and stirred for 

2 hours with HCTU (316 mg, 0.832 mmol) and DIPEA (0.604 mL, 3.47 mmol). 

Compound 3.326 (304 mg, 0.832 mmol) was then added to the reaction mixture and 

stirred for 48 hours. It was diluted in CH2Cl2 and washed with KHSO4 and Na2CO3 twice 

each, and brine once before being dried with MgSO4 and concentrated in vacuo. The 

crude mixture was purified via column chromatography with a 10% EtOAc/hexanes 

solvent system yielding 400 mg (45%) of compound 3.16. 1H NMR (CDCl3): δ 7.31 - 

7.40 (m, 5 H), 6.48 - 6.54 (m, 1 H), 5.13 (s, 2 H), 4.13 - 4.29 (m, 12 H), 3.28 - 3.37 (m, 2 

H), 2.41 - 2.49 (m, 2 H), 2.25 - 2.34 (m, 8 H), 1.83 - 1.93 (m, 2 H), 1.52 - 1.67 (m, 16 H), 

1.15 - 1.37 (m, 62 H), 0.83 - 0.94 (m, 12 H). 13C NMR (CDCl3): δ 173.3, 173.2, 172.1, 

171.7, 135.7, 128.5, 128.3, 128.2, 66.9, 66.5, 65.0, 56.6, 46.5, 46.3, 39.4, 34.0, 31.9, 29.6, 

29.5, 29.5, 29.3, 29.3, 29.1, 24.8, 24.3, 22.7, 17.7, 14.1 ppm. (C74H127NO15) 

calculated=1269.9206. HRMS [M+Na]+=1292.9098. Obs=1292.9103. SEC: Mn=2175 

g/mol, Đ=1.36. IR ν  (cm-1): 3410, 2924, 2854, 1740. 



www.manaraa.com

 

 

 

63 

Synthesis of benzyl-deprotected tethered lauryl G2 dendron 3.17 

Compound 3.16 (100 mg) was dissolved in 4:1 EtOAc/MeOH (15 mL) mixture and 

purged with nitrogen. Palladium on carbon (10% by wt.) (10 mg) was then added before 

the reaction was purged with hydrogen and stirred under a hydrogen balloon for four 

hours. The reaction was then filtered through celite and concentrated in vacuo to yield 90 

mg (98%) of compound 3.17, which was taken to the next step without further 

purification. Complete removal of the benzyl ester was confirmed by 1H NMR 

spectroscopy. 1H NMR (CDCl3) δ 6.73 - 6.84 (m, 1H), 4.10 - 4.27 (m, 12H), 3.24 - 3.42 

(m, 2H), 2.39 - 2.53 (m, 2H), 2.25 - 2.39 (m, 8H), 1.77 - 1.94 (m, 2H), 1.54 - 1.70 (m, 

16H), 1.18 - 1.34 (m, 62H), 0.89 (t, J = 7.04 Hz, 12H). 

Synthesis of lauryl G2 Janus dendrimer 3.18 

Compound 3.17 (50.0 mg, 42.4 µmol) was dissolved in CH2Cl2 along with EDC·HCl 

(12.2 mg, 63.5 µmol), DMAP (7.75 mg, 63.5 µmol) and pyridine (4.90 µL, 63.5 µmol). 

The reaction mixture was stirred for 20 minutes before having hydrophilic block 3.627 

(37.8 mg, 63.5 µmol) added to it and being left for 48 hours. At this point the reaction 

was diluted in CH2Cl2 and washed with KHSO4 and Na2CO3 twice each, and brine once 

before being dried with MgSO4 and concentrated in vacuo. The residue was purified via 

prep TLC using a 10% MeOH in EtOAc solvent system. This yielded 60 mg (81%) of the 

desired product. 1H NMR (CDCl3): δ 6.58 (s, 2 H), 6.47 - 6.50 (m, 1 H), 5.00 (s, 2 H), 

4.13 - 4.26 (m, 18 H), 3.83 - 3.88 (m, 4 H), 3.77 - 3.82 (m, 2 H), 3.71 - 3.76 (m, 6 H), 

3.63 - 3.70 (m, 12 H), 3.53 - 3.58 (m, 6 H), 3.38 (s, 9 H), 3.30 - 3.34 (m, 2 H), 2.42 - 2.47 

(m, 2 H), 2.30 (t, J=7.6 Hz, 8 H), 1.85 - 1.90 (m, 2 H), 1.55 - 1.64 (m, 16 H), 1.20 - 1.34 

(m, 62 H), 0.89 (t, J=6.7 Hz, 12 H). 13C NMR (CDCl3): δ 173.2, 173.2, 173.1, 172.1, 

171.7, 152.7, 131.6, 131.0, 110.0, 72.3, 71.9, 70.8, 70.7, 70.5, 70.5, 69.7, 68.9, 66.8, 65.0, 

59.0, 46.5, 46.3, 34.0, 31.9, 31.8, 29.6, 29.5, 29.3, 29.2, 29.1, 24.8, 22.6, 17.7, 14.1 ppm. 

(C95H169NO27) calculated=1756.1882. HRMS [M+Na]+=1779.1774. Obs=1779.1780. 

SEC: Mn=2355 g/mol, Đ=1.01. IR ν (cm-1): 3366, 2925, 2855, 1742. 

Synthesis of acetonide-deprotected tethered G3 dendron 3.19 

Compound 3.4 (720 mg, 0.675 mmol) was dissolved in MeOH (70mL) and concentrated 

sulfuric acid (0.7 mL). The mixture was stirred at room temperature for 2 h before being 
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concentrated in vacuo to remove most of the methanol. It was then diluted with EtOAc 

and washed with NaHCO3 (1M) once, dried with Mg2SO4, filtered and concentrated in 

vacuo to yield 99.7% of compound 3.19 (610 mg). Complete removal of acetonide 

groups was confirmed by 1H NMR spectroscopy and compound 3.19 was carried through 

without any further purification. 1H NMR (CDCl3) δ 7.30 - 7.38 (m, 5H), 7.01 - 7.06 (m, 

1H), 5.11 (s, 2H), 4.19 - 4.34 (m, 12H), 3.73 - 3.81 (m, 8H), 3.66 - 3.73 (m, 8H), 3.23 - 

3.29 (m, 2H), 2.40 - 2.45 (m, 2H), 1.82 - 1.88 (m, 2H), 1.29 (s, 6H), 1.25 (s, 3H), 1.07 (s, 

9H). 

Synthesis of tethered lauryl G3 dendron 3.20 

Dendron 3.19 (329 mg, 0.327 mmol) was dissolved in pyridine (5 mL) and placed in an 

ice bath. After stirring on ice for five minutes, lauroyl chloride (579 mg, 2.65 mmol) was 

added dropwise and left to stir at room temperature overnight. The reaction mixture was 

diluted in CH2Cl2 and washed twice with KHSO4 and once with brine. The organic 

fraction was dried with MgSO4 and concentrated in vacuo to give a quantitative yield of 

compound 3.19. 1H NMR (CDCl3): δ 7.31 - 7.39 (m, 5 H), 6.63 - 6.70 (m, 1 H), 5.12 (s, 2 

H), 4.12 - 4.31 (m, 28 H), 3.27 - 3.36 (m, 2 H), 2.41 - 2.47 (m, 2 H), 2.23 - 2.33 (m, 16 

H), 1.83 - 1.92 (m, 2 H), 1.50 - 1.66 (m, 32 H), 1.16 - 1.36 (m, 133 H), 0.82 - 0.94 (m, 24 

H). 13C NMR (CDCl3, 101MHz): δ 173.0, 171.9, 171.4, 171.3, 149.8, 135.7, 128.4, 

128.1, 128.0, 77.3, 76.7, 66.2, 65.2, 64.7, 46.6, 46.2, 46.2, 33.8, 31.7, 31.6, 29.5, 29.3, 

29.2, 29.1, 29.0, 24.7, 24.3, 22.5, 17.6, 17.3, 13.9 ppm. (C142H247NO31) 

calculated=2462.7782. HRMS [M+Na]+=2485.7674. Obs=2485.7674. SEC: Mn=3336 

g/mol, Đ=1.03. IR ν (cm-1): 3425, 2923, 2854, 1739. 

Synthesis of benzyl-deprotected tethered lauryl G3 dendron 3.21 

Compound 3.20 (256 mg) was dissolved in 4:1 EtOAc/MeOH (25 mL) mixture and 

purged with nitrogen. Palladium on carbon (10% by wt.) (25.6 mg) was then added 

before the reaction was purged with hydrogen and stirred under a hydrogen balloon for 

four hours. The reaction was then filtered through celite and concentrated in vacuo to 

quantitatively yield 200 mg of compound 3.21, which was taken to the next step without 

further purification. Complete removal of the benzyl ester was confirmed by 1H NMR 

spectroscopy. 1H NMR (CDCl3) δ 6.86 - 6.91 (m, 1H), 4.15 - 4.30 (m, 28H), 3.34 - 3.41 
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(m, 2H), 2.45 - 2.50 (m, 2H), 2.27 - 2.33 (m, 16H), 1.89 - 1.94 (m, 2H), 1.55 - 1.63 (m, 

32H), 1.19 - 1.34 (m, 133H), 0.89 (t, J = 7.04 Hz, 24H). 

Synthesis of lauryl G3 Janus dendrimer 3.22 

Compound 3.21 (50.0 mg, 21.1 µmol) was dissolved in CH2Cl2 along with EDC·HCl 

(6.06 mg, 31.6 µmol), DMAP (3.85 mg, 31.6 µmol) and pyridine (2.55 µL, 31.6 µmol). 

The reaction mixture was stirred for 20 minutes before having hydrophilic block 3.627 

(18.8 mg, 31.6 µmol) added to it and being left for 48 hours. At this point the reaction 

was diluted in CH2Cl2 and washed with KHSO4 and Na2CO3 twice each, and brine once 

before being dried with MgSO4 and concentrated in vacuo. The residue was purified via 

prep TLC using a 10% MeOH in EtOAc solvent system. This yielded 30 mg of the 

desired product. 1H NMR (CDCl3): δ 6.62 - 6.65 (m, 1 H), 6.58 (s, 2 H), 4.98 (s, 2 H), 

4.19 - 4.30 (m, 28 H), 4.13 - 4.19 (m, 6 H), 3.84 - 3.87 (m, 4 H), 3.78 - 3.81 (m, 2 H), 

3.72 - 3.75 (m, 6 H), 3.64 - 3.68 (m, 12 H), 3.54 - 3.56 (m, 6 H), 3.38 (s, 9 H), 3.29 - 3.34 

(m, 2 H), 2.40 - 2.45 (m, 2 H), 2.30 (t, J=7.6 Hz, 16 H), 1.85 - 1.89 (m, 2 H), 1.55 - 1.64 

(m, 32 H), 1.21 - 1.33 (m, 133 H), 0.88 (t, J=7.0 Hz, 24 H). 13C NMR (CDCl3): δ 173.2, 

173.2, 173.1, 172.9, 172.0, 171.5, 152.7, 151.4, 151.2, 110.0, 77.2, 76.8, 71.9, 70.8, 69.7, 

68.9, 64.8, 59.0, 46.7, 46.3, 34.0, 31.9, 29.6, 29.5, 29.3, 29.3, 29.1, 24.8, 22.7, 17.8, 14.1 

ppm. (C163H289NO43) calculated=2949.0458. HRMS [M+Na]+=2972.0351. 

Obs=2972.0356. SEC: Mn=4038 g/mol, Đ=1.09. IR ν (cm-1): 3419, 2924, 2854, 1741. 

Synthesis of azide-terminated hydrophilic block 3.24 

Compound 3.2330 (300 mg, 0.458 mmol) was combined in dry THF (1 mL) with LiCl 

(38.8 mg, 0.915 mmol) and NaBH4 (34.6 mg, 0.915 mmol). Ethanol (1 mL) was then 

added and the mixture was left to stir overnight at room temperature. The reaction was 

subsequently diluted in 0.5 M HCl and extracted with three times with EtOAc. The 

organic fractions were combined, dried with MgSO4 and concentrated in vacuo. The 

resulting oil was purified via column chromatography using EtOAc as the eluent to give 

compound 3.24 (29.5 mg) in 10% yield. 1H NMR (CDCl3): δ 6.63 (s, 2 H), 4.60 (s, 2 H), 

4.17 - 4.20 (m, 4 H), 4.14 - 4.17 (m, 2 H), 3.85 - 3.88 (m, 4 H), 3.80 - 3.83 (m, 2 H), 3.73 

- 3.76 (m, 6 H), 3.66 - 3.70 (m, 12 H), 3.39 (t, J=5.0 Hz, 6 H). 13C NMR (CDCl3): δ 

152.4, 137.2, 136.7, 106.0, 72.1, 70.4, 69.7, 68.5, 64.8, 50.5 ppm. (C25H41N9O10) 
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calculated=627.2976. HRMS [M+Na]+ cald=650.2869. Obs=650.2874. IR ν (cm-1): 3455, 

2869, 2097. 

Synthesis of azide-terminated lauryl G3 Janus dendrimer 3.25 

Compound 3.21 (69.4 mg, 29.2 µmol) was dissolved in CH2Cl2 along with EDC·HCl 

(8.40 mg, 43.8 µmol), DMAP (5.34 mg, 43.8 µmol) and pyridine (3.5 µL, 43.8 µmol). 

The reaction mixture was stirred for 20 minutes before having hydrophilic block 3.24 

(27.5 mg, 43.8 µmol) added to it and being left for 48 hours. At this point the reaction 

was diluted in CH2Cl2 and washed with KHSO4 and Na2CO3 twice each, and brine once 

before being dried with MgSO4 and concentrated in vacuo. The residue was purified via 

dialysis using a 1:1 MeOH/EtOAc solvent system. This yielded 55 mg, 63% of the 

desired product. 1H NMR (CDCl3): δ 6.57 - 6.62 (m, 3 H), 5.36 (s, 2 H), 4.15 - 4.31 (m, 

34 H), 3.84 - 3.87 (m, 4 H), 3.80 - 3.83 (m, 2 H), 3.71 - 3.76 (m, 4 H), 3.65 - 3.71 (m, 14 

H), 3.39 (t, J=5.1 Hz, 6 H), 3.29 - 3.34 (m, 2 H), 2.39 - 2.43 (m, 2 H), 2.30 (t, J=7.6 Hz, 

16 H), 1.85 - 1.90 (m, 2 H), 1.56 - 1.64 (m, 32 H), 1.22 - 1.34 (m, 133 H), 0.86 - 0.92 (m, 

24 H). 13C NMR (CDCl3): δ 173.2, 173.2, 173.0, 172.0, 171.6, 171.5, 152.7, 131.1, 

125.5, 107.9, 77.2, 76.8, 72.3, 70.9, 70.7, 70.6, 70.5, 70.1, 70.0, 69.8, 68.9, 68.0, 67.1, 

66.5, 65.3, 64.9, 50.7, 46.7, 46.4, 46.3, 39.4, 34.2, 34.0, 31.9, 31.8, 31.7, 30.3, 29.7, 29.6, 

29.5, 29.3, 29.3, 29.1, 25.6, 24.9, 24.6, 22.7, 22.5, 21.2, 17.8, 17.5, 14.2, 14.1 ppm. 

(C160H280N10O40) calculated=2982.0183. HRMS [M+Na]+ cald=3005.0076. 

Obs=3005.0081. LRMS [(M+2K)/2]+ cald=1529.0869. Obs=1532.0. SEC: Mn=4329 

g/mol, Đ=1.06. IR ν (cm-1): 3502, 2922, 2853, 2100, 1740. 

2 kg/mol PEO surface functionalization of dendrimer assemblies 

Assemblies were made as described above, however using 80% Janus dendrimer 3.22 

(0.8 mg, 0.067 µmol) and 20% Janus dendrimer 3.25 (0.2 mg, 0.067 µmol). After stirring 

30 minutes, 2 kg/mol PEO-pentynoic ester (1.67 mg, 0.8 µmol), CuCl2 (4.57 µg, 0.0268 

µmol) and sodium ascorbate (5.31 µg, 0.0268 µmol) were added and stirred overnight. 

The reaction mixture was dialyzed against water in a 10 kg/mol MWCO membrane 

overnight to yield 2 kg/mol PEO surface functionalized dendrimer assemblies. 
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Janus dendrimer self-assembly 

An 8 mg/mL solution of the dendrimer was prepared in DMSO or THF and was stirred 

overnight to ensure complete solubilization. It was then filtered using a Dynagard® 

polypropylene syringe filter (0.2 µm, surface area 0.8 m2). Next, either 0.1 mL of the 

DMSO or THF solution was rapidly injected into 0.9 mL of filtered (Acrodisc® 25 mm 

syringe filter with 0.1 µm Supor® membrane) deionized water with rapid stirring or 0.9 

mL of filtered, deionized water was added to 0.1 mL of the DMSO solution with rapid 

stirring over a period of ~ 1 minute. The resulting suspension was then dialyzed against 

deionized water using a 3500 g/mol MWCO membrane. Note, Janus dendrimers 3.22 and 

3.25 were studied only in THF due to insolubility in DMSO. In addition, they were not 

dialyzed as this caused them to oil out. Instead they were stirred overnight, uncapped to 

remove THF. 

Dynamic light scattering (DLS) 

DLS analysis was run using the 0.8 mg/mL suspensions of polymer assemblies prepared 

as described above. The measurements were performed in a 1 cm pathlength glass cuvette 

using a Zetasizer Nano ZS instrument from Malvern. Fifteen repeat diameter 

measurements were made per run to determine an average particle diameter and three 

runs per sample were done. 

Transmission electron microscopy (TEM) 

The suspension of assemblies (10 µL, 0.08 mg/mL) was placed on a copper 

Formvar/carbon support film coated grid and was left to dry overnight. Imaging was 

performed using a Phillips CM10 microscope operating at 80 kV with a 40 µm aperture. 

 

3.4 Conclusions 
A library of Janus dendrimers was synthesized and their self-assembly in water was 

studied using nano-precipitation particle assembly procedures. Most of these dendrimers 

formed solid aggregates of varying sizes; however Janus dendrimer 3.22 formed 

polydisperse dendrimersomes as indicated by TEM imaging. The azide analogue of this 

Janus dendrimer 3.25 did not form dendrimersomes nor did a mix of this dendrimer with 

the vesicle-forming dendrimer 3.22, suggesting that the azide moieties may upset the 
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hydrophilic-hydrophobic balance of the system. Despite this, a surface functionalization 

reaction was performed on the assemblies formed by the 80/20 mixture of 3.22 and 3.25. 

IR spectroscopy suggested that this reaction was successful and that if it is possible to 

prepare dendrimersomes from these dendrimers, it should be possible to functionalize 

their surfaces. 
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Chapter 4 
 

4.1 Conclusions and Future Work 
The work described in this thesis presented the synthesis of novel polymeric and 

dendritic systems as well as studies toward their potential utility for various biomedical 

applications, specifically drug delivery. The formulation of smart materials is always a 

highly sought after pursuit for it is the future of biological applications. Shown herein is a 

novel photoresponsive triblock copolymer which self-assembles into polymersomes, the 

first to date which has been synthesized with a completely photodegradable hydrophobic 

block. Its self-assembly into polymersomes and subsequent photoinduced degradation 

showcased its capacity for encapsulation and release of both hydrophilic and hydrophobic 

cargo molecules.  Herein lies the future work involving this system. Although the goal of 

synthesizing a completely photodegradable hydrophobic block was achieved, the 

polymerization process yielded a homopolymer that was relatively polydisperse. For use 

in drug delivery applications, a low polymer dispersity is necessary so that the presence 

of comparatively high molecular weight polymers does not prolong the degradation 

process and result in large polymer degradation products being left in the body. By 

optimizing the reaction conditions such as time and monomer ratio, this can be mitigated. 

Another option however, is to use a more inherently monodisperse polymer system such 

as Janus dendrimers. Also, further studies to show the encapsulation and release of 

hydrophilic and hydrophobic molecules will be able to elaborate the potential of a 

stimuli-responsive polymersome system. For example the encapsulation and release of 

fluorescein as a hydrophilic drug model and nile red as a hydrophobic drug model will be 

able to show the capacity for polymersomes to load cargo in their hydrophilic core and 

hydrophobic bilayer membrane. This sort of study would elucidate the potential for 

applications, especially drug delivery. 

 

Also described in this thesis was a novel Janus dendrimer system which was studied and 

shown to assemble into dendrimersomes. After assembly of a number of Janus 
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dendrimers, an acylated G3 bis-MPA polyester dendron coupled with a tris-tri(ethylene 

glycol) gallic alcohol had a suitable hydrophilic weight fraction and membrane properties 

to form vesicles when self-assembled by adding a THF solution of the Janus dendrimer 

into water. When the same dendron was coupled to an azide-terminated analogue of the 

same hydrophilic block it did not yield a vesicle morphology but rather solid aggregates. 

Despite this, these aggregates were still able to undergo surface functionalization with 2 

kg/mol PEO-alkyne via CuAAC chemistry. By doing so, it showed the potential for 

functionalizing this system with other ligands such as carbohydrates, imaging agents, 

targeting moieties or even other dendritic systems. Therefore future work for this project 

includes tuning the chemical structure and/or optimizing the particle assembly protocols 

to form vesicles with the azide-terminated Janus dendrimer either on its own or as a 

mixture with the non-azide Janus dendrimer. Perhaps by augmenting the length of the 

acyl chains, shorter or longer, or changing the generation of polyester dendron backbone, 

G1 or G2, an optimal hydrophobic unit will be found. The ideal hydrophobic block would 

combine the right hydrophilic volume fraction with adequately flexible and malleable 

hydrophobic blocks that can interact with each other, such that when vesicles are formed 

the membrane will be robust enough that introduction of a small percentage of azide units 

will not disrupt the assembly process and to survive the drying process during TEM 

sample preparation. That being said, many research groups characterize their assemblies 

using cryo-TEM, where instead of dehydrating the assemblies for imaging, they are 

preserved in their original aqueous environment, thus eliminating the drying step 

completely. Perhaps outsourcing the imaging to a facility with cryo-TEM would be 

worthwhile. Following the optimization of the assemblies, they can then be 

functionalized with those other moieties in order to impart various biological functions to 

the dendrimersomes such as macromolecule binding, receptor targeting or metal 

chelating. The effectiveness of coupling these ligands using CuAAC chemistry can then 

be quantified using infrared spectroscopy by comparing the transmittance percentages of 

the azide stretch at 2100 cm-1 before and after the reaction and relating that value to the 

concentration using Beer’s Law.  
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4.3 Appendix 2: Supporting Information for Chapter 2 
1H NMR, 13C NMR and IR Spectra 
 

 
Figure S4.1. 1H NMR spectrum (400MHz, CDCl3) of monomer 2.3. 

 
Figure S4.2. 13C NMR spectrum (100MHz, CDCl3) of monomer 2.3 
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Figure S4.3. IR spectrum of monomer 2.3. 
 

 
 
Figure S4.4. 1H NMR spectrum (400MHz, CDCl3) of monomer 2.5. 
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Figure S4.5. 13C NMR spectrum (100MHz, CDCl3) of monomer 2.5. 

 
Figure S4.6. IR spectrum of monomer 2.5. 
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Figure S4.7. 1H NMR spectrum (400MHz, DMSO-d6) of polymer 2.6. 
 

 
Figure S4.8. IR spectrum of polymer 2.6. 
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Figure S4.9. 1H NMR spectrum (400MHz, DMSO-d6) of polymer 2.9. 
 

 
Figure S4.10. IR spectrum of polymer 2.9. 
 



www.manaraa.com

 

 

 

83 

 
Figure S4.11.  1H NMR spectrum (400MHz, DMSO-d6) of polymer 2.10. 
 

 
Figure S4.12. IR spectrum of polymer 2.10. 
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UV-vis Spectra 

Small molecule solutions (0.03 mg/3 mL) and polymer solutions (0.2 mg/3 mL) in 

spectroscopic grade DMSO were used for UV-vis spectrometry. The solutions were 

housed in a 1 cm quartz cuvette and all measurements were taken in a Varian Cary 300 

Bio UV-visible spectrophotometer. 

 
Figure S4.13. UV-vis spectra for monomers 2.3 and 2.5, and polymers 2.6 and 2.9. 

 

Size Exclusion Chromatography 

Polymer size was elucidated using size exclusion chromatography. The polymers were 

run using DMF as eluent and calibrated against polystyrene standards. 

 

Figure S4.14. SEC for polymers 2.6, 2.9 and 2.10, run in DMF and calibrated 

against polystyrene standards. 

 



www.manaraa.com

 

 

 

85 

Table S4.1. Results from SEC analysis of polymers 2.6, 2.9 and 2.10. 

  Polymer Mn Mw PDI 

Homopolymer 24000 40000 1.65 

750PEOtb 23000 40000 1.76 

2kPEOtb 25000 40000 1.62 
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4.4 Appendix 3: Supporting Information for Chapter 3 
1H NMR, 13C NMR and FTIR 

 
Figure S4.15. 1H NMR (599MHz, CDCl3) of 3.4. 
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Figure S4.16. 13C NMR (151MHz, CDCl3) of 3.4. 
 

 
Figure S4.17. FTIR of 3.4. 
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Figure S4.18. 1H NMR (599MHz, CDCl3) of 3.7. 
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Figure S4.19. 1H NMR (400MHz, CDCl3) of 3.10.  
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Figure S4.20. 1H NMR (400MHz, CDCl3) of 3.12.  
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Figure S4.21. 1H NMR (599MHz, CDCl3) of 3.14.  
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Figure S4.22. 13C NMR (101MHz, CDCl3) of 3.14. 
 

 
Figure S4.23. FTIR of 3.14. 
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Figure S4.24. 1H NMR (400MHz, CDCl3) of 3.16.  
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Figure S4.25. 13C NMR (151MHz, CDCl3) of 3.16. 

 
Figure S4.26. FTIR of 3.16. 
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Figure S4.27. 1H NMR (599MHz, CDCl3) of 3.18.  
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Figure S4.28. 13C NMR (151MHz, CDCl3) of 3.18. 
 

 
Figure S4.29. FTIR of 3.18. 
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Figure S4.30. 1H NMR (400MHz, CDCl3) of 3.20.  
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Figure S4.31. 13C NMR (151MHz, CDCl3) of 3.20. 

 
Figure S4.32. FTIR of 3.20. 
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Figure S4.33. 1H NMR (599MHz, CDCl3) of 3.22.  
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Figure S4.34. 13C NMR (151MHz, CDCl3) of 3.22. 

 
Figure S4.35. FTIR of 3.22. 
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Figure S4.36. 1H NMR (599MHz, CDCl3) of 3.24.  
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Figure S4.37. 13C NMR (151MHz, CDCl3) of 3.24. 

 
Figure S4.38. FTIR of 3.24. 
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Figure S4.39. 1H NMR (400MHz, CDCl3) of 3.25.  
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Figure S4.40. 13C NMR (151MHz, CDCl3) of 3.25. 

 
Figure S4.41. FTIR of 3.25. 
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